1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
#' Single First-Order kinetics
#'
#' Function describing exponential decline from a defined starting value.
#'
#' @family parent solutions
#' @param t Time.
#' @param parent_0 Starting value for the response variable at time zero.
#' @param k Kinetic rate constant.
#' @return The value of the response variable at time \code{t}.
#' @references
#' FOCUS (2006) \dQuote{Guidance Document on Estimating Persistence
#' and Degradation Kinetics from Environmental Fate Studies on Pesticides in
#' EU Registration} Report of the FOCUS Work Group on Degradation Kinetics,
#' EC Document Reference Sanco/10058/2005 version 2.0, 434 pp,
#' \url{http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics}
#' FOCUS (2014) \dQuote{Generic guidance for Estimating Persistence
#' and Degradation Kinetics from Environmental Fate Studies on Pesticides in
#' EU Registration} Report of the FOCUS Work Group on Degradation Kinetics,
#' Version 1.1, 18 December 2014
#' \url{http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics}
#' @examples
#'
#' \dontrun{plot(function(x) SFO.solution(x, 100, 3), 0, 2)}
#'
#' @useDynLib mkin SFO_solution
#' @export
SFO.solution <- function(t, parent_0, k) .Call(SFO_solution, as.double(t), as.double(parent_0), as.double(k))
#' First-Order Multi-Compartment kinetics
#'
#' Function describing exponential decline from a defined starting value, with
#' a decreasing rate constant.
#'
#' The form given here differs slightly from the original reference by
#' Gustafson and Holden (1990). The parameter \code{beta} corresponds to 1/beta
#' in the original equation.
#'
#' @family parent solutions
#' @inherit SFO.solution
#' @param alpha Shape parameter determined by coefficient of variation of rate
#' constant values.
#' @param beta Location parameter.
#' @note The solution of the FOMC kinetic model reduces to the
#' \code{\link{SFO.solution}} for large values of \code{alpha} and
#' \code{beta} with \eqn{k = \frac{\beta}{\alpha}}{k = beta/alpha}.
#' @references
#' FOCUS (2006) \dQuote{Guidance Document on Estimating Persistence
#' and Degradation Kinetics from Environmental Fate Studies on Pesticides in
#' EU Registration} Report of the FOCUS Work Group on Degradation Kinetics,
#' EC Document Reference Sanco/10058/2005 version 2.0, 434 pp,
#' \url{http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics}
#'
#' FOCUS (2014) \dQuote{Generic guidance for Estimating Persistence
#' and Degradation Kinetics from Environmental Fate Studies on Pesticides in
#' EU Registration} Report of the FOCUS Work Group on Degradation Kinetics,
#' Version 1.1, 18 December 2014
#' \url{http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics}
#'
#' Gustafson DI and Holden LR (1990) Nonlinear pesticide dissipation in soil:
#' A new model based on spatial variability. \emph{Environmental Science and
#' Technology} \bold{24}, 1032-1038
#' @examples
#'
#' plot(function(x) FOMC.solution(x, 100, 10, 2), 0, 2, ylim = c(0, 100))
#'
#' @export
FOMC.solution <- function(t, parent_0, alpha, beta)
{
parent = parent_0 / (t/beta + 1)^alpha
}
#' Indeterminate order rate equation kinetics
#'
#' Function describing exponential decline from a defined starting value, with
#' a concentration dependent rate constant.
#'
#' @family parent solutions
#' @inherit SFO.solution
#' @param k__iore Rate constant. Note that this depends on the concentration
#' units used.
#' @param N Exponent describing the nonlinearity of the rate equation
#' @note The solution of the IORE kinetic model reduces to the
#' \code{\link{SFO.solution}} if N = 1. The parameters of the IORE model can
#' be transformed to equivalent parameters of the FOMC mode - see the NAFTA
#' guidance for details.
#' @references NAFTA Technical Working Group on Pesticides (not dated) Guidance
#' for Evaluating and Calculating Degradation Kinetics in Environmental Media
#' @examples
#'
#' plot(function(x) IORE.solution(x, 100, 0.2, 1.3), 0, 2, ylim = c(0, 100))
#' \dontrun{
#' fit.fomc <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE)
#' fit.iore <- mkinfit("IORE", FOCUS_2006_C, quiet = TRUE)
#' fit.iore.deS <- mkinfit("IORE", FOCUS_2006_C, solution_type = "deSolve", quiet = TRUE)
#'
#' print(data.frame(fit.fomc$par, fit.iore$par, fit.iore.deS$par,
#' row.names = paste("model par", 1:4)))
#' print(rbind(fomc = endpoints(fit.fomc)$distimes, iore = endpoints(fit.iore)$distimes,
#' iore.deS = endpoints(fit.iore)$distimes))
#' }
#'
#' @export
IORE.solution <- function(t, parent_0, k__iore, N)
{
parent = (parent_0^(1 - N) - (1 - N) * k__iore * t)^(1/(1 - N))
}
#' Double First-Order in Parallel kinetics
#'
#' Function describing decline from a defined starting value using the sum of
#' two exponential decline functions.
#'
#' @family parent solutions
#' @inherit SFO.solution
#' @param t Time.
#' @param k1 First kinetic constant.
#' @param k2 Second kinetic constant.
#' @param g Fraction of the starting value declining according to the first
#' kinetic constant.
#' @examples
#'
#' plot(function(x) DFOP.solution(x, 100, 5, 0.5, 0.3), 0, 4, ylim = c(0,100))
#'
#' @export
DFOP.solution <- function(t, parent_0, k1, k2, g)
{
parent = g * parent_0 * exp(-k1 * t) +
(1 - g) * parent_0 * exp(-k2 * t)
}
#' Hockey-Stick kinetics
#'
#' Function describing two exponential decline functions with a break point
#' between them.
#'
#' @family parent solutions
#' @inherit DFOP.solution
#' @param tb Break point. Before this time, exponential decline according to
#' \code{k1} is calculated, after this time, exponential decline proceeds
#' according to \code{k2}.
#' @examples
#'
#' plot(function(x) HS.solution(x, 100, 2, 0.3, 0.5), 0, 2, ylim=c(0,100))
#'
#' @export
HS.solution <- function(t, parent_0, k1, k2, tb)
{
parent = ifelse(t <= tb,
parent_0 * exp(-k1 * t),
parent_0 * exp(-k1 * tb) * exp(-k2 * (t - tb)))
}
#' Single First-Order Reversible Binding kinetics
#'
#' Function describing the solution of the differential equations describing
#' the kinetic model with first-order terms for a two-way transfer from a free
#' to a bound fraction, and a first-order degradation term for the free
#' fraction. The initial condition is a defined amount in the free fraction
#' and no substance in the bound fraction.
#'
#' @family parent solutions
#' @inherit SFO.solution
#' @param k_12 Kinetic constant describing transfer from free to bound.
#' @param k_21 Kinetic constant describing transfer from bound to free.
#' @param k_1output Kinetic constant describing degradation of the free
#' fraction.
#' @return The value of the response variable, which is the sum of free and
#' bound fractions at time \code{t}.
#' @examples
#'
#' \dontrun{plot(function(x) SFORB.solution(x, 100, 0.5, 2, 3), 0, 2)}
#'
#' @export
SFORB.solution = function(t, parent_0, k_12, k_21, k_1output) {
sqrt_exp = sqrt(1/4 * (k_12 + k_21 + k_1output)^2 + k_12 * k_21 - (k_12 + k_1output) * k_21)
b1 = 0.5 * (k_12 + k_21 + k_1output) + sqrt_exp
b2 = 0.5 * (k_12 + k_21 + k_1output) - sqrt_exp
parent = parent_0 *
(((k_12 + k_21 - b1)/(b2 - b1)) * exp(-b1 * t) +
((k_12 + k_21 - b2)/(b1 - b2)) * exp(-b2 * t))
}
#' Logistic kinetics
#'
#' Function describing exponential decline from a defined starting value, with
#' an increasing rate constant, supposedly caused by microbial growth
#'
#' @family parent solutions
#' @inherit SFO.solution
#' @param kmax Maximum rate constant.
#' @param k0 Minimum rate constant effective at time zero.
#' @param r Growth rate of the increase in the rate constant.
#' @note The solution of the logistic model reduces to the
#' \code{\link{SFO.solution}} if \code{k0} is equal to \code{kmax}.
#' @examples
#'
#' # Reproduce the plot on page 57 of FOCUS (2014)
#' plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.2),
#' from = 0, to = 100, ylim = c(0, 100),
#' xlab = "Time", ylab = "Residue")
#' plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.4),
#' from = 0, to = 100, add = TRUE, lty = 2, col = 2)
#' plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.8),
#' from = 0, to = 100, add = TRUE, lty = 3, col = 3)
#' plot(function(x) logistic.solution(x, 100, 0.08, 0.001, 0.2),
#' from = 0, to = 100, add = TRUE, lty = 4, col = 4)
#' plot(function(x) logistic.solution(x, 100, 0.08, 0.08, 0.2),
#' from = 0, to = 100, add = TRUE, lty = 5, col = 5)
#' legend("topright", inset = 0.05,
#' legend = paste0("k0 = ", c(0.0001, 0.0001, 0.0001, 0.001, 0.08),
#' ", r = ", c(0.2, 0.4, 0.8, 0.2, 0.2)),
#' lty = 1:5, col = 1:5)
#'
#' # Fit with synthetic data
#' logistic <- mkinmod(parent = mkinsub("logistic"))
#'
#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
#' parms_logistic <- c(kmax = 0.08, k0 = 0.0001, r = 0.2)
#' d_logistic <- mkinpredict(logistic,
#' parms_logistic, c(parent = 100),
#' sampling_times)
#' d_2_1 <- add_err(d_logistic,
#' sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07),
#' n = 1, reps = 2, digits = 5, LOD = 0.1, seed = 123456)[[1]]
#'
#' m <- mkinfit("logistic", d_2_1, quiet = TRUE)
#' plot_sep(m)
#' summary(m)$bpar
#' endpoints(m)$distimes
#'
#' @export
logistic.solution <- function(t, parent_0, kmax, k0, r)
{
parent = parent_0 * (kmax / (kmax - k0 + k0 * exp (r * t))) ^(kmax/r)
}
|