1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
if(getRversion() >= '2.15.1') utils::globalVariables("ds")
#' Plot predictions from a fitted nonlinear mixed model obtained via an mmkin row object
#'
#' @name plot_mixed
#' @param x An object of class [saem.mmkin] or [nlme.mmkin]
#' @param i A numeric index to select datasets for which to plot the individual predictions,
#' in case plots get too large
#' @inheritParams plot.mkinfit
#' @param standardized Should the residuals be standardized? Only takes effect if
#' `resplot = "time"`.
#' @param rel.height.legend The relative height of the legend shown on top
#' @param rel.height.bottom The relative height of the bottom plot row
#' @param ymax Vector of maximum y axis values
#' @param ncol.legend Number of columns to use in the legend
#' @param nrow.legend Number of rows to use in the legend
#' @param resplot Should the residuals plotted against time or against
#' predicted values?
#' @param col_ds Colors used for plotting the observed data and the
#' corresponding model prediction lines for the different datasets.
#' @param pch_ds Symbols to be used for plotting the data.
#' @param lty_ds Line types to be used for the model predictions.
#' @importFrom stats coefficients
#' @return The functions are called for their side effect.
#' @author Johannes Ranke
#' @examples
#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
#' function(x) x$data[c("name", "time", "value")])
#' names(ds) <- paste0("ds ", 6:10)
#' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
#' A1 = mkinsub("SFO"), quiet = TRUE)
#' \dontrun{
#' f <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE)
#' plot(f[, 3:4], standardized = TRUE)
#'
#' library(nlme)
#' # For this fit we need to increase pnlsMaxiter, and we increase the
#' # tolerance in order to speed up the fit for this example evaluation
#' f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3))
#' plot(f_nlme)
#'
#' f_saem <- saem(f)
#' plot(f_saem)
#' }
#' @rdname plot_mixed
#' @export
plot.saem.mmkin <- function(x, i = 1:ncol(x$mmkin),
obs_vars = names(x$mkinmod$map),
standardized = TRUE,
xlab = "Time",
xlim = range(x$data$time),
resplot = c("predicted", "time"),
ymax = "auto", maxabs = "auto",
ncol.legend = ifelse(length(i) <= 3, length(i) + 1, ifelse(length(i) <= 8, 3, 4)),
nrow.legend = ceiling((length(i) + 1) / ncol.legend),
rel.height.legend = 0.03 + 0.08 * nrow.legend,
rel.height.bottom = 1.1,
pch_ds = 1:length(i),
col_ds = pch_ds + 1,
lty_ds = col_ds,
frame = TRUE, ...)
{
fit_1 <- x$mmkin[[1]]
ds_names <- colnames(x$mmkin)
degparms_optim <- saemix::psi(x$so)
rownames(degparms_optim) <- ds_names
degparms_optim_names <- setdiff(names(fit_1$par), names(fit_1$errparms))
colnames(degparms_optim) <- degparms_optim_names
residual_type = ifelse(standardized, "iwres", "ires")
residuals <- x$so@results@predictions[[residual_type]]
degparms_pop <- x$so@results@fixed.effects
names(degparms_pop) <- degparms_optim_names
.plot_mixed(x, i,
degparms_optim, degparms_pop, residuals,
obs_vars, standardized, xlab, xlim,
resplot, ymax, maxabs,
ncol.legend, nrow.legend,
rel.height.legend, rel.height.bottom,
pch_ds, col_ds, lty_ds, frame, ...)
}
#' @rdname plot_mixed
#' @export
plot.nlme.mmkin <- function(x, i = 1:ncol(x$mmkin),
obs_vars = names(x$mkinmod$map),
standardized = TRUE,
xlab = "Time",
xlim = range(x$data$time),
resplot = c("predicted", "time"),
ymax = "auto", maxabs = "auto",
ncol.legend = ifelse(length(i) <= 3, length(i) + 1, ifelse(length(i) <= 8, 3, 4)),
nrow.legend = ceiling((length(i) + 1) / ncol.legend),
rel.height.legend = 0.03 + 0.08 * nrow.legend,
rel.height.bottom = 1.1,
pch_ds = 1:length(i),
col_ds = pch_ds + 1,
lty_ds = col_ds,
frame = TRUE, ...)
{
degparms_optim <- coefficients(x)
degparms_pop <- nlme::fixef(x)
residuals <- residuals(x,
type = ifelse(standardized, "pearson", "response"))
.plot_mixed(x, i,
degparms_optim, degparms_pop, residuals,
obs_vars, standardized, xlab, xlim,
resplot, ymax, maxabs,
ncol.legend, nrow.legend,
rel.height.legend, rel.height.bottom,
pch_ds, col_ds, lty_ds, frame, ...)
}
.plot_mixed <- function(x, i = 1:ncol(x$mmkin),
degparms_optim,
degparms_pop,
residuals,
obs_vars = names(x$mkinmod$map),
standardized = TRUE,
xlab = "Time",
xlim = range(x$data$time),
resplot = c("predicted", "time"),
ymax = "auto", maxabs = "auto",
ncol.legend = ifelse(length(i) <= 3, length(i) + 1, ifelse(length(i) <= 8, 3, 4)),
nrow.legend = ceiling((length(i) + 1) / ncol.legend),
rel.height.legend = 0.03 + 0.08 * nrow.legend,
rel.height.bottom = 1.1,
pch_ds = 1:length(i),
col_ds = pch_ds + 1,
lty_ds = col_ds,
frame = TRUE, ...)
{
oldpar <- par(no.readonly = TRUE)
fit_1 <- x$mmkin[[1]]
ds_names <- colnames(x$mmkin)
degparms_fixed <- fit_1$fixed$value
names(degparms_fixed) <- rownames(fit_1$fixed)
degparms_all <- cbind(as.matrix(degparms_optim),
matrix(rep(degparms_fixed, nrow(degparms_optim)),
ncol = length(degparms_fixed),
nrow = nrow(degparms_optim), byrow = TRUE))
degparms_all_names <- c(names(degparms_optim), names(degparms_fixed))
colnames(degparms_all) <- degparms_all_names
degparms_all_pop <- c(degparms_pop, degparms_fixed)
odeini_names <- grep("_0$", degparms_all_names, value = TRUE)
odeparms_names <- setdiff(degparms_all_names, odeini_names)
residual_type = ifelse(standardized, "iwres", "ires")
observed <- cbind(x$data,
residual = residuals)
n_plot_rows = length(obs_vars)
n_plots = n_plot_rows * 2
# Set relative plot heights, so the first plot row is the norm
rel.heights <- if (n_plot_rows > 1) {
c(rel.height.legend, c(rep(1, n_plot_rows - 1), rel.height.bottom))
} else {
c(rel.height.legend, 1)
}
layout_matrix = matrix(c(1, 1, 2:(n_plots + 1)),
n_plot_rows + 1, 2, byrow = TRUE)
layout(layout_matrix, heights = rel.heights)
par(mar = c(0.1, 2.1, 0.6, 2.1))
plot(0, type = "n", axes = FALSE, ann = FALSE)
legend("center", bty = "n", ncol = ncol.legend,
legend = c("Population", ds_names[i]),
lty = c(1, lty_ds), lwd = c(2, rep(1, length(i))),
col = c(1, col_ds),
pch = c(NA, pch_ds))
solution_type = fit_1$solution_type
outtimes <- sort(unique(c(x$data$time,
seq(xlim[1], xlim[2], length.out = 50))))
pred_ds <- purrr::map_dfr(i, function(ds_i) {
odeparms_trans <- degparms_all[ds_i, odeparms_names]
names(odeparms_trans) <- odeparms_names # needed if only one odeparm
odeparms <- backtransform_odeparms(odeparms_trans,
x$mkinmod,
transform_rates = fit_1$transform_rates,
transform_fractions = fit_1$transform_fractions)
odeini <- degparms_all[ds_i, odeini_names]
names(odeini) <- gsub("_0", "", odeini_names)
out <- mkinpredict(x$mkinmod, odeparms, odeini,
outtimes, solution_type = solution_type,
atol = fit_1$atol, rtol = fit_1$rtol)
return(cbind(as.data.frame(out), ds = ds_names[ds_i]))
})
odeparms_pop_trans <- degparms_all_pop[odeparms_names]
odeparms_pop <- backtransform_odeparms(odeparms_pop_trans,
x$mkinmod,
transform_rates = fit_1$transform_rates,
transform_fractions = fit_1$transform_fractions)
odeini_pop <- degparms_all_pop[odeini_names]
names(odeini_pop) <- gsub("_0", "", odeini_names)
pred_pop <- as.data.frame(
mkinpredict(x$mkinmod, odeparms_pop, odeini_pop,
outtimes, solution_type = solution_type,
atol = fit_1$atol, rtol = fit_1$rtol))
resplot <- match.arg(resplot)
# Loop plot rows
for (plot_row in 1:n_plot_rows) {
obs_var <- obs_vars[plot_row]
observed_row <- subset(observed, name == obs_var)
# Set ylim to sensible default, or use ymax
if (identical(ymax, "auto")) {
ylim_row = c(0,
max(c(observed_row$value, pred_ds[[obs_var]]), na.rm = TRUE))
} else {
ylim_row = c(0, ymax[plot_row])
}
# Margins for bottom row of plots when we have more than one row
# This is the only row that needs to show the x axis legend
if (plot_row == n_plot_rows) {
par(mar = c(5.1, 4.1, 2.1, 2.1))
} else {
par(mar = c(3.0, 4.1, 2.1, 2.1))
}
plot(pred_pop$time, pred_pop[[obs_var]],
type = "l", lwd = 2,
xlim = xlim, ylim = ylim_row,
xlab = xlab, ylab = obs_var, frame = frame)
for (ds_i in seq_along(i)) {
points(subset(observed_row, ds == ds_names[ds_i], c("time", "value")),
col = col_ds[ds_i], pch = pch_ds[ds_i])
lines(subset(pred_ds, ds == ds_names[ds_i], c("time", obs_var)),
col = col_ds[ds_i], lty = lty_ds[ds_i])
}
if (identical(maxabs, "auto")) {
maxabs = max(abs(observed_row$residual), na.rm = TRUE)
}
if (identical(resplot, "time")) {
plot(0, type = "n", xlim = xlim, xlab = "Time",
ylim = c(-1.2 * maxabs, 1.2 * maxabs),
ylab = if (standardized) "Standardized residual" else "Residual")
abline(h = 0, lty = 2)
for (ds_i in seq_along(i)) {
points(subset(observed_row, ds == ds_names[ds_i], c("time", "residual")),
col = col_ds[ds_i], pch = pch_ds[ds_i])
}
}
if (identical(resplot, "predicted")) {
plot(0, type = "n",
xlim = c(0, max(pred_ds[[obs_var]])),
xlab = "Predicted",
ylim = c(-1.2 * maxabs, 1.2 * maxabs),
ylab = if (standardized) "Standardized residual" else "Residual")
abline(h = 0, lty = 2)
for (ds_i in seq_along(i)) {
observed_row_ds <- merge(
subset(observed_row, ds == ds_names[ds_i], c("time", "residual")),
subset(pred_ds, ds == ds_names[ds_i], c("time", obs_var)))
points(observed_row_ds[c(3, 2)],
col = col_ds[ds_i], pch = pch_ds[ds_i])
}
}
}
}
|