aboutsummaryrefslogtreecommitdiff
path: root/R/saem.R
blob: 05cce6829da6c54e0da01e7b1880142103ec6559 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
utils::globalVariables(c("predicted", "std"))

#' Fit nonlinear mixed models with SAEM
#'
#' This function uses [saemix::saemix()] as a backend for fitting nonlinear mixed
#' effects models created from [mmkin] row objects using the Stochastic Approximation
#' Expectation Maximisation algorithm (SAEM).
#'
#' An mmkin row object is essentially a list of mkinfit objects that have been
#' obtained by fitting the same model to a list of datasets using [mkinfit].
#'
#' Starting values for the fixed effects (population mean parameters, argument
#' psi0 of [saemix::saemixModel()] are the mean values of the parameters found
#' using [mmkin].
#'
#' @importFrom utils packageVersion
#' @param object An [mmkin] row object containing several fits of the same
#'   [mkinmod] model to different datasets
#' @param verbose Should we print information about created objects of
#'   type [saemix::SaemixModel] and [saemix::SaemixData]?
#' @param transformations Per default, all parameter transformations are done
#'   in mkin. If this argument is set to 'saemix', parameter transformations
#'   are done in 'saemix' for the supported cases, i.e. (as of version 1.1.2)
#'   SFO, FOMC, DFOP and HS without fixing `parent_0`, and SFO or DFOP with
#'   one SFO metabolite.
#' @param degparms_start Parameter values given as a named numeric vector will
#'   be used to override the starting values obtained from the 'mmkin' object.
#' @param test_log_parms If TRUE, an attempt is made to use more robust starting
#'   values for population parameters fitted as log parameters in mkin (like
#'   rate constants) by only considering rate constants that pass the t-test
#'   when calculating mean degradation parameters using [mean_degparms].
#' @param conf.level Possibility to adjust the required confidence level
#'   for parameter that are tested if requested by 'test_log_parms'.
#' @param solution_type Possibility to specify the solution type in case the
#'   automatic choice is not desired
#' @param no_random_effect Character vector of degradation parameters for
#'   which there should be no variability over the groups. Only used
#'   if the covariance model is not explicitly specified.
#' @param covariance.model Will be passed to [saemix::SaemixModel()]. Per
#'   default, uncorrelated random effects are specified for all degradation
#'   parameters.
#' @param fail_with_errors Should a failure to compute standard errors
#'   from the inverse of the Fisher Information Matrix be a failure?
#' @param quiet Should we suppress the messages saemix prints at the beginning
#'   and the end of the optimisation process?
#' @param nbiter.saemix Convenience option to increase the number of
#'   iterations
#' @param control Passed to [saemix::saemix].
#' @param \dots Further parameters passed to [saemix::saemixModel].
#' @return An S3 object of class 'saem.mmkin', containing the fitted
#'   [saemix::SaemixObject] as a list component named 'so'. The
#'   object also inherits from 'mixed.mmkin'.
#' @seealso [summary.saem.mmkin] [plot.mixed.mmkin]
#' @examples
#' \dontrun{
#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
#'  function(x) subset(x$data[c("name", "time", "value")]))
#' names(ds) <- paste("Dataset", 6:10)
#' f_mmkin_parent_p0_fixed <- mmkin("FOMC", ds,
#'   state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE)
#' f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed)
#'
#' f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE)
#' f_saem_sfo <- saem(f_mmkin_parent["SFO", ])
#' f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
#' f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
#' illparms(f_saem_dfop)
#' update(f_saem_dfop, covariance.model = diag(c(1, 1, 1, 0)))
#' AIC(f_saem_dfop)
#'
#' # The returned saem.mmkin object contains an SaemixObject, therefore we can use
#' # functions from saemix
#' library(saemix)
#' compare.saemix(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so)
#' plot(f_saem_fomc$so, plot.type = "convergence")
#' plot(f_saem_fomc$so, plot.type = "individual.fit")
#' plot(f_saem_fomc$so, plot.type = "npde")
#' plot(f_saem_fomc$so, plot.type = "vpc")
#'
#' f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
#' f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
#' compare.saemix(f_saem_fomc$so, f_saem_fomc_tc$so)
#'
#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
#'   A1 = mkinsub("SFO"))
#' fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
#'   A1 = mkinsub("SFO"))
#' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
#'   A1 = mkinsub("SFO"))
#' # The following fit uses analytical solutions for SFO-SFO and DFOP-SFO,
#' # and compiled ODEs for FOMC that are much slower
#' f_mmkin <- mmkin(list(
#'     "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
#'   ds, quiet = TRUE)
#' # saem fits of SFO-SFO and DFOP-SFO to these data take about five seconds
#' # each on this system, as we use analytical solutions written for saemix.
#' # When using the analytical solutions written for mkin this took around
#' # four minutes
#' f_saem_sfo_sfo <- saem(f_mmkin["SFO-SFO", ])
#' f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
#' # We can use print, plot and summary methods to check the results
#' print(f_saem_dfop_sfo)
#' plot(f_saem_dfop_sfo)
#' summary(f_saem_dfop_sfo, data = TRUE)
#'
#' # The following takes about 6 minutes
#' #f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve",
#' #  control = list(nbiter.saemix = c(200, 80), nbdisplay = 10))
#'
#' #saemix::compare.saemix(list(
#' #  f_saem_dfop_sfo$so,
#' #  f_saem_dfop_sfo_deSolve$so))
#'
#' # If the model supports it, we can also use eigenvalue based solutions, which
#' # take a similar amount of time
#' #f_saem_sfo_sfo_eigen <- saem(f_mmkin["SFO-SFO", ], solution_type = "eigen",
#' #  control = list(nbiter.saemix = c(200, 80), nbdisplay = 10))
#' }
#' @export
saem <- function(object, ...) UseMethod("saem")

#' @rdname saem
#' @export
saem.mmkin <- function(object,
  transformations = c("mkin", "saemix"),
  degparms_start = numeric(),
  test_log_parms = TRUE,
  conf.level = 0.6,
  solution_type = "auto",
  covariance.model = "auto",
  no_random_effect = NULL,
  nbiter.saemix = c(300, 100),
  control = list(displayProgress = FALSE, print = FALSE,
    nbiter.saemix = nbiter.saemix,
    save = FALSE, save.graphs = FALSE),
  fail_with_errors = TRUE,
  verbose = FALSE, quiet = FALSE, ...)
{
  call <- match.call()
  transformations <- match.arg(transformations)
  m_saemix <- saemix_model(object, verbose = verbose,
    degparms_start = degparms_start,
    test_log_parms = test_log_parms, conf.level = conf.level,
    solution_type = solution_type,
    transformations = transformations,
    covariance.model = covariance.model,
    no_random_effect = no_random_effect,
    ...)
  d_saemix <- saemix_data(object, verbose = verbose)

  fit_failed <- FALSE
  FIM_failed <- NULL
  fit_time <- system.time({
    utils::capture.output(f_saemix <- try(saemix::saemix(m_saemix, d_saemix, control)), split = !quiet)
    if (inherits(f_saemix, "try-error")) fit_failed <- TRUE
  })

  return_data <- nlme_data(object)

  if (!fit_failed) {
    if (any(is.na(f_saemix@results@se.fixed))) FIM_failed <- c(FIM_failed, "fixed effects")
    if (any(is.na(c(f_saemix@results@se.omega, f_saemix@results@se.respar)))) {
      FIM_failed <- c(FIM_failed, "random effects and residual error parameters")
    }
    if (!is.null(FIM_failed) & fail_with_errors) {
      stop("Could not invert FIM for ", paste(FIM_failed, collapse = " and "))
    }

    transparms_optim <- f_saemix@results@fixed.effects
    names(transparms_optim) <- f_saemix@results@name.fixed

    if (transformations == "mkin") {
      bparms_optim <- backtransform_odeparms(transparms_optim,
        object[[1]]$mkinmod,
        object[[1]]$transform_rates,
        object[[1]]$transform_fractions)
    } else {
      bparms_optim <- transparms_optim
    }

    saemix_data_ds <- f_saemix@data@data$ds
    mkin_ds_order <- as.character(unique(return_data$ds))
    saemix_ds_order <- unique(saemix_data_ds)

    psi <- saemix::psi(f_saemix)
    rownames(psi) <- saemix_ds_order
    return_data$predicted <- f_saemix@model@model(
      psi = psi[mkin_ds_order, ],
      id = as.numeric(return_data$ds),
      xidep = return_data[c("time", "name")])

    return_data <- transform(return_data,
      residual = value - predicted,
      std = sigma_twocomp(predicted,
        f_saemix@results@respar[1], f_saemix@results@respar[2]))
    return_data <- transform(return_data,
      standardized = residual / std)
  }

  result <- list(
    mkinmod = object[[1]]$mkinmod,
    mmkin = object,
    solution_type = object[[1]]$solution_type,
    transformations = transformations,
    transform_rates = object[[1]]$transform_rates,
    transform_fractions = object[[1]]$transform_fractions,
    sm = m_saemix,
    so = f_saemix,
    call = call,
    time = fit_time,
    mean_dp_start = attr(m_saemix, "mean_dp_start"),
    bparms.fixed = object[[1]]$bparms.fixed,
    data = return_data,
    err_mod = object[[1]]$err_mod,
    date.fit = date(),
    saemixversion = as.character(utils::packageVersion("saemix")),
    mkinversion = as.character(utils::packageVersion("mkin")),
    Rversion = paste(R.version$major, R.version$minor, sep=".")
  )

  if (!fit_failed) {
    result$mkin_ds_order <- mkin_ds_order
    result$saemix_ds_order <- saemix_ds_order
    result$bparms.optim <- bparms_optim
  }

  class(result) <- c("saem.mmkin", "mixed.mmkin")
  return(result)
}

#' @export
#' @rdname saem
#' @param x An saem.mmkin object to print
#' @param digits Number of digits to use for printing
print.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) {
  cat( "Kinetic nonlinear mixed-effects model fit by SAEM" )
  cat("\nStructural model:\n")
  diffs <- x$mmkin[[1]]$mkinmod$diffs
  nice_diffs <- gsub("^(d.*) =", "\\1/dt =", diffs)
  writeLines(strwrap(nice_diffs, exdent = 11))
  cat("\nData:\n")
  cat(nrow(x$data), "observations of",
    length(unique(x$data$name)), "variable(s) grouped in",
    length(unique(x$data$ds)), "datasets\n")

  if (inherits(x$so, "try-error")) {
    cat("\nFit did not terminate successfully\n")
  } else {
    cat("\nLikelihood computed by importance sampling\n")
    print(data.frame(
        AIC = AIC(x$so, type = "is"),
        BIC = BIC(x$so, type = "is"),
        logLik = logLik(x$so, type = "is"),
        row.names = " "), digits = digits)

    cat("\nFitted parameters:\n")
    conf.int <- parms(x, ci = TRUE)
    print(conf.int, digits = digits)
  }

  invisible(x)
}

#' @rdname saem
#' @return An [saemix::SaemixModel] object.
#' @export
saemix_model <- function(object, solution_type = "auto",
  transformations = c("mkin", "saemix"), degparms_start = numeric(),
  covariance.model = "auto", no_random_effect = NULL,
  test_log_parms = FALSE, conf.level = 0.6, verbose = FALSE, ...)
{
  if (nrow(object) > 1) stop("Only row objects allowed")

  mkin_model <- object[[1]]$mkinmod

  degparms_optim <-  mean_degparms(object, test_log_parms = test_log_parms)
  na_degparms <- names(which(is.na(degparms_optim)))
  if (length(na_degparms) > 0) {
    message("Did not find valid starting values for ", paste(na_degparms, collapse = ", "), "\n",
      "Now trying with test_log_parms = FALSE")
    degparms_optim <-  mean_degparms(object, test_log_parms = FALSE)
  }
  if (transformations == "saemix") {
    degparms_optim <- backtransform_odeparms(degparms_optim,
      object[[1]]$mkinmod,
      object[[1]]$transform_rates,
      object[[1]]$transform_fractions)
  }
  degparms_fixed <- object[[1]]$bparms.fixed

  # Transformations are done in the degradation function by default
  # (transformations = "mkin")
  transform.par = rep(0, length(degparms_optim))

  odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE)
  odeini_fixed_parm_names <- grep('_0$', names(degparms_fixed), value = TRUE)

  odeparms_fixed_names <- setdiff(names(degparms_fixed), odeini_fixed_parm_names)
  odeparms_fixed <- degparms_fixed[odeparms_fixed_names]

  odeini_fixed <- degparms_fixed[odeini_fixed_parm_names]
  names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names)

  model_function <- FALSE

  # Model functions with analytical solutions
  # Fixed parameters, use_of_ff = "min" and turning off sinks currently not supported here
  # In general, we need to consider exactly how the parameters in mkinfit were specified,
  # as the parameters are currently mapped by position in these solutions
  sinks <- sapply(mkin_model$spec, function(x) x$sink)
  if (length(odeparms_fixed) == 0 & mkin_model$use_of_ff == "max" & all(sinks)) {
    # Parent only
    if (length(mkin_model$spec) == 1) {
      parent_type <- mkin_model$spec[[1]]$type
      if (length(odeini_fixed) == 1) {
        if (transformations == "saemix") {
          stop("saemix transformations are not supported for parent fits with fixed initial parent value")
        }
        if (parent_type == "SFO") {
          stop("saemix needs at least two parameters to work on.")
        }
        if (parent_type == "FOMC") {
          model_function <- function(psi, id, xidep) {
            odeini_fixed / (xidep[, "time"]/exp(psi[id, 2]) + 1)^exp(psi[id, 1])
          }
        }
        if (parent_type == "DFOP") {
          model_function <- function(psi, id, xidep) {
            g <- plogis(psi[id, 3])
            t <- xidep[, "time"]
            odeini_fixed * (g * exp(- exp(psi[id, 1]) * t) +
              (1 - g) * exp(- exp(psi[id, 2]) * t))
          }
        }
        if (parent_type == "HS") {
          model_function <- function(psi, id, xidep) {
            tb <- exp(psi[id, 3])
            t <- xidep[, "time"]
            k1 = exp(psi[id, 1])
            odeini_fixed * ifelse(t <= tb,
              exp(- k1 * t),
              exp(- k1 * tb) * exp(- exp(psi[id, 2]) * (t - tb)))
          }
        }
      } else {
        if (parent_type == "SFO") {
          if (transformations == "mkin") {
            model_function <- function(psi, id, xidep) {
              psi[id, 1] * exp( - exp(psi[id, 2]) * xidep[, "time"])
            }
          } else {
            model_function <- function(psi, id, xidep) {
              psi[id, 1] * exp( - psi[id, 2] * xidep[, "time"])
            }
            transform.par = c(0, 1)
          }
        }
        if (parent_type == "FOMC") {
          if (transformations == "mkin") {
            model_function <- function(psi, id, xidep) {
              psi[id, 1] / (xidep[, "time"]/exp(psi[id, 3]) + 1)^exp(psi[id, 2])
            }
          } else {
            model_function <- function(psi, id, xidep) {
              psi[id, 1] / (xidep[, "time"]/psi[id, 3] + 1)^psi[id, 2]
            }
            transform.par = c(0, 1, 1)
          }
        }
        if (parent_type == "DFOP") {
          if (transformations == "mkin") {
            model_function <- function(psi, id, xidep) {
              g <- plogis(psi[id, 4])
              t <- xidep[, "time"]
              psi[id, 1] * (g * exp(- exp(psi[id, 2]) * t) +
                (1 - g) * exp(- exp(psi[id, 3]) * t))
            }
          } else {
            model_function <- function(psi, id, xidep) {
              g <- psi[id, 4]
              t <- xidep[, "time"]
              psi[id, 1] * (g * exp(- psi[id, 2] * t) +
                (1 - g) * exp(- psi[id, 3] * t))
            }
            transform.par = c(0, 1, 1, 3)
          }
        }
        if (parent_type == "HS") {
          if (transformations == "mkin") {
            model_function <- function(psi, id, xidep) {
              tb <- exp(psi[id, 4])
              t <- xidep[, "time"]
              k1 <- exp(psi[id, 2])
              psi[id, 1] * ifelse(t <= tb,
                exp(- k1 * t),
                exp(- k1 * tb) * exp(- exp(psi[id, 3]) * (t - tb)))
            }
          } else {
            model_function <- function(psi, id, xidep) {
              tb <- psi[id, 4]
              t <- xidep[, "time"]
              psi[id, 1] * ifelse(t <= tb,
                exp(- psi[id, 2] * t),
                exp(- psi[id, 2] * tb) * exp(- psi[id, 3] * (t - tb)))
            }
            transform.par = c(0, 1, 1, 1)
          }
        }
      }
    }

    # Parent with one metabolite
    # Parameter names used in the model functions are as in
    # https://nbviewer.jupyter.org/urls/jrwb.de/nb/Symbolic%20ODE%20solutions%20for%20mkin.ipynb
    types <- unname(sapply(mkin_model$spec, function(x) x$type))
    if (length(mkin_model$spec) == 2 &! "SFORB" %in% types ) {
      # Initial value for the metabolite (n20) must be fixed
      if (names(odeini_fixed) == names(mkin_model$spec)[2]) {
        n20 <- odeini_fixed
        parent_name <- names(mkin_model$spec)[1]
        if (identical(types, c("SFO", "SFO"))) {
          if (transformations == "mkin") {
            model_function <- function(psi, id, xidep) {
              t <- xidep[, "time"]
              n10 <- psi[id, 1]
              k1 <- exp(psi[id, 2])
              k2 <- exp(psi[id, 3])
              f12 <- plogis(psi[id, 4])
              ifelse(xidep[, "name"] == parent_name,
                n10 * exp(- k1 * t),
                (((k2 - k1) * n20 - f12 * k1 * n10) * exp(- k2 * t)) / (k2 - k1) +
                  (f12 * k1 * n10 * exp(- k1 * t)) / (k2 - k1)
              )
            }
          } else {
            model_function <- function(psi, id, xidep) {
              t <- xidep[, "time"]
              n10 <- psi[id, 1]
              k1 <- psi[id, 2]
              k2 <- psi[id, 3]
              f12 <- psi[id, 4]
              ifelse(xidep[, "name"] == parent_name,
                n10 * exp(- k1 * t),
                (((k2 - k1) * n20 - f12 * k1 * n10) * exp(- k2 * t)) / (k2 - k1) +
                  (f12 * k1 * n10 * exp(- k1 * t)) / (k2 - k1)
              )
            }
            transform.par = c(0, 1, 1, 3)
          }
        }
        if (identical(types, c("DFOP", "SFO"))) {
          if (transformations == "mkin") {
            model_function <- function(psi, id, xidep) {
              t <- xidep[, "time"]
              n10 <- psi[id, 1]
              k2 <- exp(psi[id, 2])
              f12 <- plogis(psi[id, 3])
              l1 <- exp(psi[id, 4])
              l2 <- exp(psi[id, 5])
              g <- plogis(psi[id, 6])
              ifelse(xidep[, "name"] == parent_name,
                n10 * (g * exp(- l1 * t) + (1 - g) * exp(- l2 * t)),
                ((f12 * g - f12) * l2 * n10 * exp(- l2 * t)) / (l2 - k2) -
                  (f12 * g * l1 * n10 * exp(- l1 * t)) / (l1 - k2) +
                  ((((l1 - k2) * l2 - k2 * l1 + k2^2) * n20 +
                      ((f12 * l1 + (f12 * g - f12) * k2) * l2 -
                        f12 * g * k2 * l1) * n10) * exp( - k2 * t)) /
                  ((l1 - k2) * l2 - k2 * l1 + k2^2)
              )
            }
          } else {
            model_function <- function(psi, id, xidep) {
              t <- xidep[, "time"]
              n10 <- psi[id, 1]
              k2 <- psi[id, 2]
              f12 <- psi[id, 3]
              l1 <- psi[id, 4]
              l2 <- psi[id, 5]
              g <- psi[id, 6]
              ifelse(xidep[, "name"] == parent_name,
                n10 * (g * exp(- l1 * t) + (1 - g) * exp(- l2 * t)),
                ((f12 * g - f12) * l2 * n10 * exp(- l2 * t)) / (l2 - k2) -
                  (f12 * g * l1 * n10 * exp(- l1 * t)) / (l1 - k2) +
                  ((((l1 - k2) * l2 - k2 * l1 + k2^2) * n20 +
                      ((f12 * l1 + (f12 * g - f12) * k2) * l2 -
                        f12 * g * k2 * l1) * n10) * exp( - k2 * t)) /
                  ((l1 - k2) * l2 - k2 * l1 + k2^2)
              )
            }
            transform.par = c(0, 1, 3, 1, 1, 3)
          }
        }
      }
    }
  }

  if (is.function(model_function) & solution_type == "auto") {
    solution_type = "analytical saemix"
  } else {

    if (transformations == "saemix") {
      stop("Using saemix transformations is only supported if an analytical solution is implemented for saemix")
    }

    if (solution_type == "auto")
      solution_type <- object[[1]]$solution_type

    # Define some variables to avoid function calls in model function
    transparms_optim_names <- names(degparms_optim)
    odeini_optim_names <- gsub('_0$', '', odeini_optim_parm_names)
    diff_names <- names(mkin_model$diffs)
    ode_transparms_optim_names <- setdiff(transparms_optim_names, odeini_optim_parm_names)
    transform_rates <- object[[1]]$transform_rates
    transform_fractions <- object[[1]]$transform_fractions

    # Define the model function
    model_function <- function(psi, id, xidep) {

      uid <- unique(id)

      res_list <- lapply(uid, function(i) {

        transparms_optim <- as.numeric(psi[i, ]) # psi[i, ] is a dataframe when called in saemix.predict
        names(transparms_optim) <- transparms_optim_names

        odeini_optim <- transparms_optim[odeini_optim_parm_names]
        names(odeini_optim) <- odeini_optim_names

        odeini <- c(odeini_optim, odeini_fixed)[diff_names]

        odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model,
          transform_rates = transform_rates,
          transform_fractions = transform_fractions)
        odeparms <- c(odeparms_optim, odeparms_fixed)

        xidep_i <- xidep[which(id == i), ]

        if (solution_type[1] == "analytical") {
          out_values <- mkin_model$deg_func(xidep_i, odeini, odeparms)
        } else {

          i_time <- xidep_i$time
          i_name <- xidep_i$name

          out_wide <- mkinpredict(mkin_model,
            odeparms = odeparms, odeini = odeini,
            solution_type = solution_type,
            outtimes = sort(unique(i_time)),
            na_stop = FALSE
          )

          out_index <- cbind(as.character(i_time), as.character(i_name))
          out_values <- out_wide[out_index]
        }
        return(out_values)
      })
      res <- unlist(res_list)
      return(res)
    }
  }

  error.model <- switch(object[[1]]$err_mod,
    const = "constant",
    tc = "combined",
    obs = "constant")

  if (object[[1]]$err_mod == "obs") {
    warning("The error model 'obs' (variance by variable) can currently not be transferred to an saemix model")
  }

  error.init <- switch(object[[1]]$err_mod,
    const = c(a = mean(sapply(object, function(x) x$errparms)), b = 1),
    tc = c(a = mean(sapply(object, function(x) x$errparms[1])),
      b = mean(sapply(object, function(x) x$errparms[2]))),
    obs = c(a = mean(sapply(object, function(x) x$errparms)), b = 1))

  degparms_psi0 <- degparms_optim
  degparms_psi0[names(degparms_start)] <- degparms_start
  psi0_matrix <- matrix(degparms_psi0, nrow = 1)
  colnames(psi0_matrix) <- names(degparms_psi0)

  if (covariance.model[1] == "auto") {
    covariance_diagonal <- rep(1, length(degparms_optim))
    if (!is.null(no_random_effect)) {
      degparms_no_random <- which(names(degparms_psi0) %in% no_random_effect)
      covariance_diagonal[degparms_no_random] <- 0
    }
    covariance.model = diag(covariance_diagonal)
  }

  res <- saemix::saemixModel(model_function,
    psi0 = psi0_matrix,
    "Mixed model generated from mmkin object",
    transform.par = transform.par,
    error.model = error.model,
    verbose = verbose,
    covariance.model = covariance.model,
    ...
  )
  attr(res, "mean_dp_start") <- degparms_optim
  return(res)
}

#' @rdname saem
#' @importFrom rlang !!!
#' @return An [saemix::SaemixData] object.
#' @export
saemix_data <- function(object, verbose = FALSE, ...) {
  if (nrow(object) > 1) stop("Only row objects allowed")
  ds_names <- colnames(object)

  ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")])
  names(ds_list) <- ds_names
  ds_saemix_all <- vctrs::vec_rbind(!!!ds_list, .names_to = "ds")
  ds_saemix <- data.frame(ds = ds_saemix_all$ds,
    name = as.character(ds_saemix_all$variable),
    time = ds_saemix_all$time,
    value = ds_saemix_all$observed,
    stringsAsFactors = FALSE)

  res <- saemix::saemixData(ds_saemix,
    name.group = "ds",
    name.predictors = c("time", "name"),
    name.response = "value",
    verbose = verbose,
    ...)
  return(res)
}

#' @export
logLik.saem.mmkin <- function(object, ...) return(logLik(object$so))

#' @export
update.saem.mmkin <- function(object, ..., evaluate = TRUE) {
  call <- object$call
  # For some reason we get saem.mmkin in the call when using mhmkin
  # so we need to fix this in order to avoid exporting saem.mmkin
  # in addition to the S3 method
  call[[1]] <- saem
  update_arguments <- match.call(expand.dots = FALSE)$...

  if (length(update_arguments) > 0) {
    update_arguments_in_call <- !is.na(match(names(update_arguments), names(call)))
  }

  for (a in names(update_arguments)[update_arguments_in_call]) {
    call[[a]] <- update_arguments[[a]]
  }

  update_arguments_not_in_call <- !update_arguments_in_call
  if(any(update_arguments_not_in_call)) {
    call <- c(as.list(call), update_arguments[update_arguments_not_in_call])
    call <- as.call(call)
  }
  if(evaluate) eval(call, parent.frame())
  else call
}

#' @export
#' @rdname saem
#' @param ci Should a matrix with estimates and confidence interval boundaries
#' be returned? If FALSE (default), a vector of estimates is returned.
parms.saem.mmkin <- function(object, ci = FALSE, ...) {
  cov.mod <- object$sm@covariance.model
  n_cov_mod_parms <- sum(cov.mod[upper.tri(cov.mod, diag = TRUE)])
  n_parms <- length(object$sm@name.modpar) +
    n_cov_mod_parms +
    length(object$sm@name.sigma)

  if (inherits(object$so, "try-error")) {
    conf.int <- matrix(rep(NA, 3 * n_parms), ncol = 3)
    colnames(conf.int) <- c("estimate", "lower", "upper")
  } else {
    conf.int <- object$so@results@conf.int[c("estimate", "lower", "upper")]
    rownames(conf.int) <- object$so@results@conf.int[["name"]]
    conf.int.var <- grepl("^Var\\.", rownames(conf.int))
    conf.int <- conf.int[!conf.int.var, ]
    conf.int.cov <- grepl("^Cov\\.", rownames(conf.int))
    conf.int <- conf.int[!conf.int.cov, ]
  }
  estimate <- conf.int[, "estimate"]

  names(estimate) <- rownames(conf.int)

  if (ci) return(conf.int)
  else return(estimate)
}

Contact - Imprint