1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
|
#' Fit nonlinear mixed models with SAEM
#'
#' This function uses [saemix::saemix()] as a backend for fitting nonlinear mixed
#' effects models created from [mmkin] row objects using the Stochastic Approximation
#' Expectation Maximisation algorithm (SAEM).
#'
#' An mmkin row object is essentially a list of mkinfit objects that have been
#' obtained by fitting the same model to a list of datasets using [mkinfit].
#'
#' Starting values for the fixed effects (population mean parameters, argument
#' psi0 of [saemix::saemixModel()] are the mean values of the parameters found
#' using [mmkin].
#'
#' @param object An [mmkin] row object containing several fits of the same
#' [mkinmod] model to different datasets
#' @param verbose Should we print information about created objects of
#' type [saemix::SaemixModel] and [saemix::SaemixData]?
#' @param quiet Should we suppress the messages saemix prints at the beginning
#' and the end of the optimisation process?
#' @param cores The number of cores to be used for multicore processing using
#' [parallel::mclapply()]. Using more than 1 core is experimental and may
#' lead to excessive forking, apparently depending on the BLAS version
#' used.
#' @param suppressPlot Should we suppress any plotting that is done
#' by the saemix function?
#' @param control Passed to [saemix::saemix]
#' @param \dots Further parameters passed to [saemix::saemixModel].
#' @return An S3 object of class 'saem.mmkin', containing the fitted
#' [saemix::SaemixObject] as a list component named 'so'. The
#' object also inherits from 'mixed.mmkin'.
#' @seealso [summary.saem.mmkin] [plot.mixed.mmkin]
#' @examples
#' \dontrun{
#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
#' function(x) subset(x$data[c("name", "time", "value")]))
#' names(ds) <- paste("Dataset", 6:10)
#' f_mmkin_parent_p0_fixed <- mmkin("FOMC", ds, cores = 1,
#' state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE)
#' f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed)
#'
#' f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE)
#' f_saem_sfo <- saem(f_mmkin_parent["SFO", ])
#' f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
#' f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
#'
#' # The returned saem.mmkin object contains an SaemixObject, therefore we can use
#' # functions from saemix
#' library(saemix)
#' compare.saemix(list(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so))
#' plot(f_saem_fomc$so, plot.type = "convergence")
#' plot(f_saem_fomc$so, plot.type = "individual.fit")
#' plot(f_saem_fomc$so, plot.type = "npde")
#' plot(f_saem_fomc$so, plot.type = "vpc")
#'
#' f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
#' f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
#' compare.saemix(list(f_saem_fomc$so, f_saem_fomc_tc$so))
#'
#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"))
#' fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
#' A1 = mkinsub("SFO"))
#' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
#' A1 = mkinsub("SFO"))
#' # The following fit uses analytical solutions for SFO-SFO and DFOP-SFO,
#' # and compiled ODEs for FOMC that are much slower
#' f_mmkin <- mmkin(list(
#' "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
#' ds, quiet = TRUE)
#' # These take about five seconds each on this system, as we use
#' # analytical solutions written for saemix. When using the analytical
#' # solutions written for mkin this took around four minutes
#' f_saem_sfo_sfo <- saem(f_mmkin["SFO-SFO", ])
#' f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
#' # We can use print, plot and summary methods to check the results
#' print(f_saem_dfop_sfo)
#' plot(f_saem_dfop_sfo)
#' summary(f_saem_dfop_sfo, data = TRUE)
#'
#' # Using a single core, the following takes about 6 minutes as we do not have an
#' # analytical solution. Using 10 cores it is slower instead of faster
#' f_saem_fomc <- saem(f_mmkin["FOMC-SFO", ], cores = 1)
#' plot(f_saem_fomc)
#' }
#' @export
saem <- function(object, control, ...) UseMethod("saem")
#' @rdname saem
#' @export
saem.mmkin <- function(object,
control = list(displayProgress = FALSE, print = FALSE,
save = FALSE, save.graphs = FALSE),
cores = 1,
verbose = FALSE, suppressPlot = TRUE, quiet = FALSE, ...)
{
m_saemix <- saemix_model(object, cores = cores, verbose = verbose, ...)
d_saemix <- saemix_data(object, verbose = verbose)
if (suppressPlot) {
# We suppress the log-likelihood curve that saemix currently
# produces at the end of the fit by plotting to a file
# that we discard afterwards
tmp <- tempfile()
grDevices::png(tmp)
}
fit_time <- system.time({
utils::capture.output(f_saemix <- saemix::saemix(m_saemix, d_saemix, control), split = !quiet)
})
if (suppressPlot) {
grDevices::dev.off()
unlink(tmp)
}
transparms_optim <- f_saemix@results@fixed.effects
names(transparms_optim) <- f_saemix@results@name.fixed
bparms_optim <- backtransform_odeparms(transparms_optim,
object[[1]]$mkinmod,
object[[1]]$transform_rates,
object[[1]]$transform_fractions)
return_data <- nlme_data(object)
return_data$predicted <- f_saemix@model@model(
psi = saemix::psi(f_saemix),
id = as.numeric(return_data$ds),
xidep = return_data[c("time", "name")])
return_data <- transform(return_data,
residual = predicted - value,
std = sigma_twocomp(predicted,
f_saemix@results@respar[1], f_saemix@results@respar[2]))
return_data <- transform(return_data,
standardized = residual / std)
result <- list(
mkinmod = object[[1]]$mkinmod,
mmkin = object,
solution_type = object[[1]]$solution_type,
transform_rates = object[[1]]$transform_rates,
transform_fractions = object[[1]]$transform_fractions,
so = f_saemix,
time = fit_time,
mean_dp_start = attr(m_saemix, "mean_dp_start"),
bparms.optim = bparms_optim,
bparms.fixed = object[[1]]$bparms.fixed,
data = return_data,
err_mod = object[[1]]$err_mod,
date.fit = date(),
saemixversion = as.character(utils::packageVersion("saemix")),
mkinversion = as.character(utils::packageVersion("mkin")),
Rversion = paste(R.version$major, R.version$minor, sep=".")
)
class(result) <- c("saem.mmkin", "mixed.mmkin")
return(result)
}
#' @export
#' @rdname saem
#' @param x An saem.mmkin object to print
#' @param digits Number of digits to use for printing
print.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) {
cat( "Kinetic nonlinear mixed-effects model fit by SAEM" )
cat("\nStructural model:\n")
diffs <- x$mmkin[[1]]$mkinmod$diffs
nice_diffs <- gsub("^(d.*) =", "\\1/dt =", diffs)
writeLines(strwrap(nice_diffs, exdent = 11))
cat("\nData:\n")
cat(nrow(x$data), "observations of",
length(unique(x$data$name)), "variable(s) grouped in",
length(unique(x$data$ds)), "datasets\n")
cat("\nLikelihood computed by importance sampling\n")
print(data.frame(
AIC = AIC(x$so, type = "is"),
BIC = BIC(x$so, type = "is"),
logLik = logLik(x$so, type = "is"),
row.names = " "), digits = digits)
cat("\nFitted parameters:\n")
conf.int <- x$so@results@conf.int[c("estimate", "lower", "upper")]
rownames(conf.int) <- x$so@results@conf.int[["name"]]
print(conf.int, digits = digits)
invisible(x)
}
#' @rdname saem
#' @return An [saemix::SaemixModel] object.
#' @export
saemix_model <- function(object, cores = 1, verbose = FALSE, ...) {
if (nrow(object) > 1) stop("Only row objects allowed")
mkin_model <- object[[1]]$mkinmod
solution_type <- object[[1]]$solution_type
degparms_optim <- mean_degparms(object)
degparms_fixed <- object[[1]]$bparms.fixed
# Transformations are done in the degradation function
transform.par = rep(0, length(degparms_optim))
odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE)
odeini_fixed_parm_names <- grep('_0$', names(degparms_fixed), value = TRUE)
odeparms_fixed_names <- setdiff(names(degparms_fixed), odeini_fixed_parm_names)
odeparms_fixed <- degparms_fixed[odeparms_fixed_names]
odeini_fixed <- degparms_fixed[odeini_fixed_parm_names]
names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names)
model_function <- FALSE
# Model functions with analytical solutions
# Fixed parameters, use_of_ff = "min" and turning off sinks currently not supported here
# In general, we need to consider exactly how the parameters in mkinfit were specified,
# as the parameters are currently mapped by position in these solutions
sinks <- sapply(mkin_model$spec, function(x) x$sink)
if (length(odeparms_fixed) == 0 & mkin_model$use_of_ff == "max" & all(sinks)) {
# Parent only
if (length(mkin_model$spec) == 1) {
parent_type <- mkin_model$spec[[1]]$type
if (length(odeini_fixed) == 1) {
if (parent_type == "SFO") {
stop("saemix needs at least two parameters to work on.")
}
if (parent_type == "FOMC") {
model_function <- function(psi, id, xidep) {
odeini_fixed / (xidep[, "time"]/exp(psi[id, 2]) + 1)^exp(psi[id, 1])
}
}
if (parent_type == "DFOP") {
model_function <- function(psi, id, xidep) {
g <- plogis(psi[id, 3])
t <- xidep[, "time"]
odeini_fixed * (g * exp(- exp(psi[id, 1]) * t) +
(1 - g) * exp(- exp(psi[id, 2]) * t))
}
}
if (parent_type == "HS") {
model_function <- function(psi, id, xidep) {
tb <- exp(psi[id, 3])
t <- xidep[, "time"]
k1 = exp(psi[id, 1])
odeini_fixed * ifelse(t <= tb,
exp(- k1 * t),
exp(- k1 * t) * exp(- exp(psi[id, 2]) * (t - tb)))
}
}
} else {
if (parent_type == "SFO") {
model_function <- function(psi, id, xidep) {
psi[id, 1] * exp( - exp(psi[id, 2]) * xidep[, "time"])
}
}
if (parent_type == "FOMC") {
model_function <- function(psi, id, xidep) {
psi[id, 1] / (xidep[, "time"]/exp(psi[id, 3]) + 1)^exp(psi[id, 2])
}
}
if (parent_type == "DFOP") {
model_function <- function(psi, id, xidep) {
g <- plogis(psi[id, 4])
t <- xidep[, "time"]
psi[id, 1] * (g * exp(- exp(psi[id, 2]) * t) +
(1 - g) * exp(- exp(psi[id, 3]) * t))
}
}
if (parent_type == "HS") {
model_function <- function(psi, id, xidep) {
tb <- exp(psi[id, 4])
t <- xidep[, "time"]
k1 = exp(psi[id, 2])
psi[id, 1] * ifelse(t <= tb,
exp(- k1 * t),
exp(- k1 * t) * exp(- exp(psi[id, 3]) * (t - tb)))
}
}
}
}
# Parent with one metabolite
# Parameter names used in the model functions are as in
# https://nbviewer.jupyter.org/urls/jrwb.de/nb/Symbolic%20ODE%20solutions%20for%20mkin.ipynb
if (length(mkin_model$spec) == 2) {
types <- unname(sapply(mkin_model$spec, function(x) x$type))
# Initial value for the metabolite (n20) must be fixed
if (names(odeini_fixed) == names(mkin_model$spec)[2]) {
n20 <- odeini_fixed
parent_name <- names(mkin_model$spec)[1]
if (identical(types, c("SFO", "SFO"))) {
model_function <- function(psi, id, xidep) {
t <- xidep[, "time"]
n10 <- psi[id, 1]
k1 <- exp(psi[id, 2])
k2 <- exp(psi[id, 3])
f12 <- plogis(psi[id, 4])
ifelse(xidep[, "name"] == parent_name,
n10 * exp(- k1 * t),
(((k2 - k1) * n20 - f12 * k1 * n10) * exp(- k2 * t)) / (k2 - k1) +
(f12 * k1 * n10 * exp(- k1 * t)) / (k2 - k1)
)
}
}
if (identical(types, c("DFOP", "SFO"))) {
model_function <- function(psi, id, xidep) {
t <- xidep[, "time"]
n10 <- psi[id, 1]
k2 <- exp(psi[id, 2])
f12 <- plogis(psi[id, 3])
l1 <- exp(psi[id, 4])
l2 <- exp(psi[id, 5])
g <- plogis(psi[id, 6])
ifelse(xidep[, "name"] == parent_name,
n10 * (g * exp(- l1 * t) + (1 - g) * exp(- l2 * t)),
((f12 * g - f12) * l2 * n10 * exp(- l2 * t)) / (l2 - k2) -
(f12 * g * l1 * n10 * exp(- l1 * t)) / (l1 - k2) +
((((l1 - k2) * l2 - k2 * l1 + k2^2) * n20 +
((f12 * l1 + (f12 * g - f12) * k2) * l2 -
f12 * g * k2 * l1) * n10) * exp( - k2 * t)) /
((l1 - k2) * l2 - k2 * l1 + k2^2)
)
}
}
}
}
}
if (is.function(model_function)) {
solution_type = "analytical saemix"
} else {
model_function <- function(psi, id, xidep) {
uid <- unique(id)
res_list <- parallel::mclapply(uid, function(i) {
transparms_optim <- as.numeric(psi[i, ])
names(transparms_optim) <- names(degparms_optim)
odeini_optim <- transparms_optim[odeini_optim_parm_names]
names(odeini_optim) <- gsub('_0$', '', odeini_optim_parm_names)
odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)]
ode_transparms_optim_names <- setdiff(names(transparms_optim), odeini_optim_parm_names)
odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model,
transform_rates = object[[1]]$transform_rates,
transform_fractions = object[[1]]$transform_fractions)
odeparms <- c(odeparms_optim, odeparms_fixed)
xidep_i <- subset(xidep, id == i)
if (solution_type == "analytical") {
out_values <- mkin_model$deg_func(xidep_i, odeini, odeparms)
} else {
i_time <- xidep_i$time
i_name <- xidep_i$name
out_wide <- mkinpredict(mkin_model,
odeparms = odeparms, odeini = odeini,
solution_type = solution_type,
outtimes = sort(unique(i_time)),
na_stop = FALSE
)
out_index <- cbind(as.character(i_time), as.character(i_name))
out_values <- out_wide[out_index]
}
return(out_values)
}, mc.cores = cores)
res <- unlist(res_list)
return(res)
}
}
error.model <- switch(object[[1]]$err_mod,
const = "constant",
tc = "combined",
obs = "constant")
if (object[[1]]$err_mod == "obs") {
warning("The error model 'obs' (variance by variable) can currently not be transferred to an saemix model")
}
error.init <- switch(object[[1]]$err_mod,
const = c(a = mean(sapply(object, function(x) x$errparms)), b = 1),
tc = c(a = mean(sapply(object, function(x) x$errparms[1])),
b = mean(sapply(object, function(x) x$errparms[2]))),
obs = c(a = mean(sapply(object, function(x) x$errparms)), b = 1))
psi0_matrix <- matrix(degparms_optim, nrow = 1)
colnames(psi0_matrix) <- names(degparms_optim)
res <- saemix::saemixModel(model_function,
psi0 = psi0_matrix,
"Mixed model generated from mmkin object",
transform.par = transform.par,
error.model = error.model,
verbose = verbose
)
attr(res, "mean_dp_start") <- degparms_optim
return(res)
}
#' @rdname saem
#' @return An [saemix::SaemixData] object.
#' @export
saemix_data <- function(object, verbose = FALSE, ...) {
if (nrow(object) > 1) stop("Only row objects allowed")
ds_names <- colnames(object)
ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")])
names(ds_list) <- ds_names
ds_saemix_all <- purrr::map_dfr(ds_list, function(x) x, .id = "ds")
ds_saemix <- data.frame(ds = ds_saemix_all$ds,
name = as.character(ds_saemix_all$variable),
time = ds_saemix_all$time,
value = ds_saemix_all$observed,
stringsAsFactors = FALSE)
res <- saemix::saemixData(ds_saemix,
name.group = "ds",
name.predictors = c("time", "name"),
name.response = "value",
verbose = verbose,
...)
return(res)
}
|