1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
#' Create saemix models from mmkin row objects
#'
#' This function sets up a nonlinear mixed effects model for an mmkin row
#' object for use with the saemix package. An mmkin row object is essentially a
#' list of mkinfit objects that have been obtained by fitting the same model to
#' a list of datasets.
#'
#' @param object An mmkin row object containing several fits of the same model to different datasets
#' @rdname saemix
#' @examples
#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
#' function(x) subset(x$data[c("name", "time", "value")]))
#' names(ds) <- paste("Dataset", 6:10)
#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"))
#' f_mmkin <- mmkin(list("SFO-SFO" = sfo_sfo), ds, quiet = TRUE, cores = 5)
#' \dontrun{
#' if (require(saemix)) {
#' m_saemix <- saemix_model(f_mmkin)
#' d_saemix <- saemix_data(f_mmkin)
#' saemix_options <- list(seed = 123456, save = FALSE, save.graphs = FALSE)
#' saemix(m_saemix, d_saemix, saemix_options)
#' }
#' }
#' @return An [saemix::SaemixModel] object.
#' @export
saemix_model <- function(object) {
if (nrow(object) > 1) stop("Only row objects allowed")
mkin_model <- object[[1]]$mkinmod
analytical <- is.function(mkin_model$deg_func)
degparms_optim <- mean_degparms(object)
psi0 <- matrix(degparms_optim, nrow = 1)
colnames(psi0) <- names(degparms_optim)
degparms_fixed <- object[[1]]$bparms.fixed
odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE)
odeini_fixed_parm_names <- grep('_0$', names(degparms_fixed), value = TRUE)
odeparms_fixed_names <- setdiff(names(degparms_fixed), odeini_fixed_parm_names)
odeparms_fixed <- degparms_fixed[odeparms_fixed_names]
odeini_fixed <- degparms_fixed[odeini_fixed_parm_names]
names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names)
model_function <- function(psi, id, xidep) {
uid <- unique(id)
res_list <- parallel::mclapply(uid, function(i) {
transparms_optim <- psi[i, ]
names(transparms_optim) <- names(degparms_optim)
odeini_optim <- transparms_optim[odeini_optim_parm_names]
names(odeini_optim) <- gsub('_0$', '', odeini_optim_parm_names)
odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)]
ode_transparms_optim_names <- setdiff(names(transparms_optim), odeini_optim_parm_names)
odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model,
transform_rates = object[[1]]$transform_rates,
transform_fractions = object[[1]]$transform_fractions)
odeparms <- c(odeparms_optim, odeparms_fixed)
xidep_i <- subset(xidep, id == i)
if (analytical) {
out_values <- mkin_model$deg_func(xidep_i, odeini, odeparms)
} else {
i_time <- xidep_i$time
i_name <- xidep_i$name
out_wide <- mkinpredict(mkin_model,
odeparms = odeparms, odeini = odeini,
solution_type = object[[1]]$solution_type,
outtimes = sort(unique(i_time)))
out_index <- cbind(as.character(i_time), as.character(i_name))
out_values <- out_wide[out_index]
}
return(out_values)
}, mc.cores = 15)
res <- unlist(res_list)
return(res)
}
res <- saemixModel(model_function, psi0,
"Mixed model generated from mmkin object",
transform.par = rep(0, length(degparms_optim)))
return(res)
}
#' @rdname saemix
#' @param \dots Further parameters passed to [saemix::saemixData]
#' @return An [saemix::SaemixData] object.
#' @export
saemix_data <- function(object, ...) {
if (nrow(object) > 1) stop("Only row objects allowed")
ds_names <- colnames(object)
ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")])
names(ds_list) <- ds_names
ds_saemix_all <- purrr::map_dfr(ds_list, function(x) x, .id = "ds")
ds_saemix <- data.frame(ds = ds_saemix_all$ds,
name = as.character(ds_saemix_all$variable),
time = ds_saemix_all$time,
value = ds_saemix_all$observed,
stringsAsFactors = FALSE)
res <- saemixData(ds_saemix,
name.group = "ds",
name.predictors = c("time", "name"),
name.response = "value", ...)
return(res)
}
|