1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
#' Create saemix models from mmkin row objects
#'
#' This function sets up a nonlinear mixed effects model for an mmkin row
#' object for use with the saemix package. An mmkin row object is essentially a
#' list of mkinfit objects that have been obtained by fitting the same model to
#' a list of datasets.
#'
#' Starting values for the fixed effects (population mean parameters, argument psi0 of
#' [saemix::saemixModel()] are the mean values of the parameters found using
#' mmkin. Starting variances of the random effects (argument omega.init) are the
#' variances of the deviations of the parameters from these mean values.
#'
#' @param object An mmkin row object containing several fits of the same model to different datasets
#' @param cores The number of cores to be used for multicore processing. Using
#' more than 1 core is experimental and may lead to uncontrolled forking,
#' apparently depending on the BLAS version used. On Windows machines, cores
#' > 1 is currently not supported.
#' @rdname saemix
#' @importFrom saemix saemixData saemixModel
#' @importFrom stats var
#' @examples
#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
#' function(x) subset(x$data[c("name", "time", "value")]))
#' names(ds) <- paste("Dataset", 6:10)
#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"))
#' \dontrun{
#' f_mmkin <- mmkin(list("SFO-SFO" = sfo_sfo), ds, quiet = TRUE)
#' library(saemix)
#' m_saemix <- saemix_model(f_mmkin, cores = 1)
#' d_saemix <- saemix_data(f_mmkin)
#' saemix_options <- list(seed = 123456,
#' save = FALSE, save.graphs = FALSE, displayProgress = FALSE,
#' nbiter.saemix = c(200, 80))
#' f_saemix <- saemix(m_saemix, d_saemix, saemix_options)
#' plot(f_saemix, plot.type = "convergence")
#' }
#' # Synthetic data with two-component error
#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
#' dt50_sfo_in <- c(80, 90, 100, 111.111, 125)
#' k_in <- log(2) / dt50_sfo_in
#'
#' SFO <- mkinmod(parent = mkinsub("SFO"))
#'
#' pred_sfo <- function(k) {
#' mkinpredict(SFO, c(k_parent = k),
#' c(parent = 100), sampling_times)
#' }
#'
#' ds_sfo_mean <- lapply(k_in, pred_sfo)
#' set.seed(123456L)
#' ds_sfo_syn <- lapply(ds_sfo_mean, function(ds) {
#' add_err(ds, sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2),
#' n = 1)[[1]]
#' })
#' \dontrun{
#' f_mmkin_syn <- mmkin("SFO", ds_sfo_syn, error_model = "tc", quiet = TRUE)
#' # plot(f_mmkin_syn)
#' m_saemix_tc <- saemix_model(f_mmkin_syn, cores = 1)
#' d_saemix_tc <- saemix_data(f_mmkin_syn)
#' f_saemix_tc <- saemix(m_saemix_tc, d_saemix_tc, saemix_options)
#' plot(f_saemix_tc, plot.type = "convergence")
#' }
#' @return An [saemix::SaemixModel] object.
#' @export
saemix_model <- function(object, cores = 1) {
if (nrow(object) > 1) stop("Only row objects allowed")
mkin_model <- object[[1]]$mkinmod
analytical <- is.function(mkin_model$deg_func)
degparms_optim <- mean_degparms(object)
psi0 <- matrix(degparms_optim, nrow = 1)
colnames(psi0) <- names(degparms_optim)
degparms_fixed <- object[[1]]$bparms.fixed
odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE)
odeini_fixed_parm_names <- grep('_0$', names(degparms_fixed), value = TRUE)
odeparms_fixed_names <- setdiff(names(degparms_fixed), odeini_fixed_parm_names)
odeparms_fixed <- degparms_fixed[odeparms_fixed_names]
odeini_fixed <- degparms_fixed[odeini_fixed_parm_names]
names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names)
model_function <- function(psi, id, xidep) {
uid <- unique(id)
res_list <- parallel::mclapply(uid, function(i) {
transparms_optim <- psi[i, ]
names(transparms_optim) <- names(degparms_optim)
odeini_optim <- transparms_optim[odeini_optim_parm_names]
names(odeini_optim) <- gsub('_0$', '', odeini_optim_parm_names)
odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)]
ode_transparms_optim_names <- setdiff(names(transparms_optim), odeini_optim_parm_names)
odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model,
transform_rates = object[[1]]$transform_rates,
transform_fractions = object[[1]]$transform_fractions)
odeparms <- c(odeparms_optim, odeparms_fixed)
xidep_i <- subset(xidep, id == i)
if (analytical) {
out_values <- mkin_model$deg_func(xidep_i, odeini, odeparms)
} else {
i_time <- xidep_i$time
i_name <- xidep_i$name
out_wide <- mkinpredict(mkin_model,
odeparms = odeparms, odeini = odeini,
solution_type = object[[1]]$solution_type,
outtimes = sort(unique(i_time)))
out_index <- cbind(as.character(i_time), as.character(i_name))
out_values <- out_wide[out_index]
}
return(out_values)
}, mc.cores = cores)
res <- unlist(res_list)
return(res)
}
raneff_0 <- mean_degparms(object, random = TRUE)$random$ds
var_raneff_0 <- apply(raneff_0, 2, var)
error.model <- switch(object[[1]]$err_mod,
const = "constant",
tc = "combined",
obs = "constant")
if (object[[1]]$err_mod == "obs") {
warning("The error model 'obs' (variance by variable) was not transferred to the saemix model")
}
error.init <- switch(object[[1]]$err_mod,
const = c(a = mean(sapply(object, function(x) x$errparms)), b = 1),
tc = c(a = mean(sapply(object, function(x) x$errparms[1])),
b = mean(sapply(object, function(x) x$errparms[2]))),
obs = c(a = mean(sapply(object, function(x) x$errparms)), b = 1))
res <- saemixModel(model_function, psi0,
"Mixed model generated from mmkin object",
transform.par = rep(0, length(degparms_optim)),
error.model = error.model, error.init = error.init,
omega.init = diag(var_raneff_0)
)
return(res)
}
#' @rdname saemix
#' @param \dots Further parameters passed to [saemix::saemixData]
#' @return An [saemix::SaemixData] object.
#' @export
saemix_data <- function(object, ...) {
if (nrow(object) > 1) stop("Only row objects allowed")
ds_names <- colnames(object)
ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")])
names(ds_list) <- ds_names
ds_saemix_all <- purrr::map_dfr(ds_list, function(x) x, .id = "ds")
ds_saemix <- data.frame(ds = ds_saemix_all$ds,
name = as.character(ds_saemix_all$variable),
time = ds_saemix_all$time,
value = ds_saemix_all$observed,
stringsAsFactors = FALSE)
res <- saemixData(ds_saemix,
name.group = "ds",
name.predictors = c("time", "name"),
name.response = "value", ...)
return(res)
}
|