1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
#' Set non-detects and unquantified values in residue series without replicates
#'
#' This function automates replacing unquantified values in residue time and
#' depth series. For time series, the function performs part of the residue
#' processing proposed in the FOCUS kinetics guidance for parent compounds
#' and metabolites. For two-dimensional residue series over time and depth,
#' it automates the proposal of Boesten et al (2015).
#'
#' @param res_raw Character vector of a residue time series, or matrix of
#' residue values with rows representing depth profiles for a specific sampling
#' time, and columns representing time series of residues at the same depth.
#' Values below the limit of detection (lod) have to be coded as "nd", values
#' between the limit of detection and the limit of quantification, if any, have
#' to be coded as "nq". Samples not analysed have to be coded as "na". All
#' values that are not "na", "nd" or "nq" have to be coercible to numeric
#' @param lod Limit of detection (numeric)
#' @param loq Limit of quantification(numeric). Must be specified if the FOCUS rule to
#' stop after the first non-detection is to be applied
#' @param time_zero_presence Do we assume that residues occur at time zero?
#' This only affects samples from the first sampling time that have been
#' reported as "nd" (not detected).
#' @references Boesten, J. J. T. I., van der Linden, A. M. A., Beltman, W. H.
#' J. and Pol, J. W. (2015). Leaching of plant protection products and their
#' transformation products; Proposals for improving the assessment of leaching
#' to groundwater in the Netherlands — Version 2. Alterra report 2630, Alterra
#' Wageningen UR (University & Research centre)
#' @references FOCUS (2014) Generic Guidance for Estimating Persistence and Degradation
#' Kinetics from Environmental Fate Studies on Pesticides in EU Registration, Version 1.1,
#' 18 December 2014, p. 251
#' @return A numeric vector, if a vector was supplied, or a numeric matrix otherwise
#' @export
#' @examples
#' # FOCUS (2014) p. 75/76 and 131/132
#' parent_1 <- c(.12, .09, .05, .03, "nd", "nd", "nd", "nd", "nd", "nd")
#' set_nd_nq(parent_1, 0.02)
#' parent_2 <- c(.12, .09, .05, .03, "nd", "nd", .03, "nd", "nd", "nd")
#' set_nd_nq(parent_2, 0.02)
#' set_nd_nq_focus(parent_2, 0.02, loq = 0.05)
#' parent_3 <- c(.12, .09, .05, .03, "nd", "nd", .06, "nd", "nd", "nd")
#' set_nd_nq(parent_3, 0.02)
#' set_nd_nq_focus(parent_3, 0.02, loq = 0.05)
#' metabolite <- c("nd", "nd", "nd", 0.03, 0.06, 0.10, 0.11, 0.10, 0.09, 0.05, 0.03, "nd", "nd")
#' set_nd_nq(metabolite, 0.02)
#' set_nd_nq_focus(metabolite, 0.02, 0.05)
#' #
#' # Boesten et al. (2015), p. 57/58
#' table_8 <- matrix(
#' c(10, 10, rep("nd", 4),
#' 10, 10, rep("nq", 2), rep("nd", 2),
#' 10, 10, 10, "nq", "nd", "nd",
#' "nq", 10, "nq", rep("nd", 3),
#' "nd", "nq", "nq", rep("nd", 3),
#' rep("nd", 6), rep("nd", 6)),
#' ncol = 6, byrow = TRUE)
#' set_nd_nq(table_8, 0.5, 1.5, time_zero_presence = TRUE)
#' table_10 <- matrix(
#' c(10, 10, rep("nd", 4),
#' 10, 10, rep("nd", 4),
#' 10, 10, 10, rep("nd", 3),
#' "nd", 10, rep("nd", 4),
#' rep("nd", 18)),
#' ncol = 6, byrow = TRUE)
#' set_nd_nq(table_10, 0.5, time_zero_presence = TRUE)
set_nd_nq <- function(res_raw, lod, loq = NA, time_zero_presence = FALSE) {
if (!is.character(res_raw)) {
stop("Please supply a vector or a matrix of character values")
}
if (is.vector(res_raw)) {
was_vector <- TRUE
res_raw <- as.matrix(res_raw)
} else {
was_vector <- FALSE
if (!is.matrix(res_raw)) {
stop("Please supply a vector or a matrix of character values")
}
}
nq <- 0.5 * (loq + lod)
nda <- 0.5 * lod # not detected but adjacent to detection
res_raw[res_raw == "nq"] <- nq
if (!time_zero_presence) {
for (j in 1:ncol(res_raw)) {
if (res_raw[1, j] == "nd") res_raw[1, j] <- "na"
}
}
res_raw[res_raw == "na"] <- NA
not_nd_na <- function(value) !(grepl("nd", value) | is.na(value))
for (i in 1:nrow(res_raw)) {
for (j in 1:ncol(res_raw)) {
if (!is.na(res_raw[i, j]) && res_raw[i, j] == "nd") {
if (i > 1) { # check earlier sample in same layer
if (not_nd_na(res_raw[i - 1, j])) res_raw[i, j] <- "nda"
}
if (i < nrow(res_raw)) { # check later sample
if (not_nd_na(res_raw[i + 1, j])) res_raw[i, j] <- "nda"
}
if (j > 1) { # check above sample at the same time
if (not_nd_na(res_raw[i, j - 1])) res_raw[i, j] <- "nda"
}
if (j < ncol(res_raw)) { # check sample below at the same time
if (not_nd_na(res_raw[i, j + 1])) res_raw[i, j] <- "nda"
}
}
}
}
res_raw[res_raw == "nda"] <- nda
res_raw[res_raw == "nd"] <- NA
result <- as.numeric(res_raw)
dim(result) <- dim(res_raw)
dimnames(result) <- dimnames(res_raw)
if (was_vector) result <- as.vector(result)
return(result)
}
#' @describeIn set_nd_nq Set non-detects in residue time series according to FOCUS rules
#' @param set_first_sample_nd Should the first sample be set to "first_sample_nd_value"
#' in case it is a non-detection?
#' @param first_sample_nd_value Value to be used for the first sample if it is a non-detection
#' @param ignore_below_loq_after_first_nd Should we ignore values below the LOQ after the first
#' non-detection that occurs after the quantified values?
#' @export
set_nd_nq_focus <- function(res_raw, lod, loq = NA,
set_first_sample_nd = TRUE, first_sample_nd_value = 0,
ignore_below_loq_after_first_nd = TRUE)
{
if (!is.vector(res_raw)) stop("FOCUS rules are only specified for one-dimensional time series")
if (ignore_below_loq_after_first_nd & is.na(loq)) {
stop("You need to specify an LOQ")
}
n <- length(res_raw)
if (ignore_below_loq_after_first_nd) {
for (i in 3:n) {
if (!res_raw[i - 2] %in% c("na", "nd")) {
if (res_raw[i - 1] == "nd") {
res_remaining <- res_raw[i:n]
res_remaining_unquantified <- ifelse(res_remaining == "na", TRUE,
ifelse(res_remaining == "nd", TRUE,
ifelse(res_remaining == "nq", TRUE,
ifelse(suppressWarnings(as.numeric(res_remaining)) < loq, TRUE, FALSE))))
res_remaining_numeric <- suppressWarnings(as.numeric(res_remaining))
res_remaining_below_loq <- ifelse(res_remaining == "nq", TRUE,
ifelse(!is.na(res_remaining_numeric) & res_remaining_numeric < loq, TRUE, FALSE))
if (all(res_remaining_unquantified)) {
res_raw[i:n] <- ifelse(res_remaining_below_loq, "nd", res_remaining)
}
}
}
}
}
result <- set_nd_nq(res_raw, lod = lod, loq = loq)
if (set_first_sample_nd) {
if (res_raw[1] == "nd") result[1] <- first_sample_nd_value
}
return(result)
}
|