1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
|
<!-- Generated by pkgdown: do not edit by hand -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Aerobic soil degradation data on dimethenamid and dimethenamid-P from the EU assessment in 2018 — dimethenamid_2018 • mkin</title>
<!-- jquery -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
<!-- Bootstrap -->
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" />
<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<!-- bootstrap-toc -->
<link rel="stylesheet" href="../bootstrap-toc.css">
<script src="../bootstrap-toc.js"></script>
<!-- Font Awesome icons -->
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" />
<!-- clipboard.js -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script>
<!-- headroom.js -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script>
<!-- pkgdown -->
<link href="../pkgdown.css" rel="stylesheet">
<script src="../pkgdown.js"></script>
<meta property="og:title" content="Aerobic soil degradation data on dimethenamid and dimethenamid-P from the EU assessment in 2018 — dimethenamid_2018" />
<meta property="og:description" content="The datasets were extracted from the active substance evaluation dossier
published by EFSA. Kinetic evaluations shown for these datasets are intended
to illustrate and advance kinetic modelling. The fact that these data and
some results are shown here does not imply a license to use them in the
context of pesticide registrations, as the use of the data may be
constrained by data protection regulations." />
<meta name="robots" content="noindex">
<!-- mathjax -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body data-spy="scroll" data-target="#toc">
<div class="container template-reference-topic">
<header>
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
<span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="../reference/index.html">Functions and data</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Articles
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="../articles/mkin.html">Introduction to mkin</a>
</li>
<li>
<a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
</li>
<li>
<a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
</li>
<li>
<a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
</li>
<li>
<a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
</li>
<li>
<a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
</li>
<li>
<a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
</li>
<li>
<a href="../articles/web_only/benchmarks.html">Some benchmark timings</a>
</li>
</ul>
</li>
<li>
<a href="../news/index.html">News</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/mkin/">
<span class="fab fa-github fa-lg"></span>
</a>
</li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
</header>
<div class="row">
<div class="col-md-9 contents">
<div class="page-header">
<h1>Aerobic soil degradation data on dimethenamid and dimethenamid-P from the EU assessment in 2018</h1>
<small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/dimethenamid_2018.R'><code>R/dimethenamid_2018.R</code></a></small>
<div class="hidden name"><code>dimethenamid_2018.Rd</code></div>
</div>
<div class="ref-description">
<p>The datasets were extracted from the active substance evaluation dossier
published by EFSA. Kinetic evaluations shown for these datasets are intended
to illustrate and advance kinetic modelling. The fact that these data and
some results are shown here does not imply a license to use them in the
context of pesticide registrations, as the use of the data may be
constrained by data protection regulations.</p>
</div>
<pre class="usage"><span class='va'>dimethenamid_2018</span></pre>
<h2 class="hasAnchor" id="format"><a class="anchor" href="#format"></a>Format</h2>
<p>An <a href='mkindsg.html'>mkindsg</a> object grouping eight datasets with some meta information</p>
<h2 class="hasAnchor" id="source"><a class="anchor" href="#source"></a>Source</h2>
<p>Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria (2018)
Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour
Rev. 2 - November 2017
<a href='https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716'>https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716</a></p>
<h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>
<p>The R code used to create this data object is installed with this package
in the 'dataset_generation' directory. In the code, page numbers are given for
specific pieces of information in the comments.</p>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>dimethenamid_2018</span><span class='op'>)</span>
</div><div class='output co'>#> <mkindsg> holding 8 mkinds objects
#> Title $title: Aerobic soil degradation data on dimethenamid-P from the EU assessment in 2018
#> Occurrence of observed compounds $observed_n:
#> DMTAP M23 M27 M31 DMTA
#> 4 7 7 7 4
#> Time normalisation factors $f_time_norm:
#> [1] 1.0000000 0.9706477 0.9706477 1.2284784 1.2284784 0.6233856 0.7678922
#> [8] 0.6733938
#> Meta information $meta:
#> study usda_soil_type study_moisture_ref_type
#> Calke Unsworth 2014 Sandy loam pF2
#> Borstel 1 Staudenmaier 2013 Sand pF1
#> Borstel 2 Staudenmaier 2009 Sand pF1
#> Elliot 1 Wendt 1997 Clay loam pF2.5
#> Elliot 2 Wendt 1997 Clay loam pF2.5
#> Flaach König 1996 Sandy clay loam pF1
#> BBA 2.2 König 1995 Loamy sand pF1
#> BBA 2.3 König 1995 Sandy loam pF1
#> rel_moisture study_ref_moisture temperature
#> Calke 1.00 NA 20
#> Borstel 1 0.50 23.00 20
#> Borstel 2 0.50 23.00 20
#> Elliot 1 0.75 33.37 23
#> Elliot 2 0.75 33.37 23
#> Flaach 0.40 NA 20
#> BBA 2.2 0.40 NA 20
#> BBA 2.3 0.40 NA 20</div><div class='input'><span class='va'>dmta_ds</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='fl'>1</span><span class='op'>:</span><span class='fl'>8</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>{</span>
<span class='va'>ds_i</span> <span class='op'><-</span> <span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>ds</span><span class='op'>[[</span><span class='va'>i</span><span class='op'>]</span><span class='op'>]</span><span class='op'>$</span><span class='va'>data</span>
<span class='va'>ds_i</span><span class='op'>[</span><span class='va'>ds_i</span><span class='op'>$</span><span class='va'>name</span> <span class='op'>==</span> <span class='st'>"DMTAP"</span>, <span class='st'>"name"</span><span class='op'>]</span> <span class='op'><-</span> <span class='st'>"DMTA"</span>
<span class='va'>ds_i</span><span class='op'>$</span><span class='va'>time</span> <span class='op'><-</span> <span class='va'>ds_i</span><span class='op'>$</span><span class='va'>time</span> <span class='op'>*</span> <span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>f_time_norm</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span>
<span class='va'>ds_i</span>
<span class='op'>}</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>)</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>sapply</a></span><span class='op'>(</span><span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>ds</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>ds</span><span class='op'>)</span> <span class='va'>ds</span><span class='op'>$</span><span class='va'>title</span><span class='op'>)</span>
<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/cbind.html'>rbind</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 1"</span><span class='op'>]</span><span class='op'>]</span>, <span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 2"</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span>
<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 1"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span>
<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 2"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span>
<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/cbind.html'>rbind</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 1"</span><span class='op'>]</span><span class='op'>]</span>, <span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 2"</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span>
<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 1"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span>
<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 2"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'><-</span> <span class='cn'>NULL</span>
<span class='co'># \dontrun{</span>
<span class='va'>dfop_sfo3_plus</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>
DMTA <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"DFOP"</span>, <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"M23"</span>, <span class='st'>"M27"</span>, <span class='st'>"M31"</span><span class='op'>)</span><span class='op'>)</span>,
M23 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>,
M27 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>,
M31 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"M27"</span>, sink <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>,
quiet <span class='op'>=</span> <span class='cn'>TRUE</span>
<span class='op'>)</span>
<span class='va'>f_dmta_mkin_tc</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span>
<span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"DFOP-SFO3+"</span> <span class='op'>=</span> <span class='va'>dfop_sfo3_plus</span><span class='op'>)</span>,
<span class='va'>dmta_ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span>
<span class='fu'><a href='nlmixr.mmkin.html'>nlmixr_model</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span><span class='op'>)</span>
</div><div class='output co'>#> <span class='message'>With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span></div><div class='output co'>#> function ()
#> {
#> ini({
#> DMTA_0 = 98.7697627680706
#> eta.DMTA_0 ~ 2.35171765917765
#> log_k_M23 = -3.92162409637283
#> eta.log_k_M23 ~ 0.549278519419884
#> log_k_M27 = -4.33774620773911
#> eta.log_k_M27 ~ 0.864474956685295
#> log_k_M31 = -4.24767627688461
#> eta.log_k_M31 ~ 0.750297149164171
#> log_k1 = -2.2341008812259
#> eta.log_k1 ~ 0.902976221565793
#> log_k2 = -3.7762779983269
#> eta.log_k2 ~ 1.57684519529298
#> g_qlogis = 0.450175725479389
#> eta.g_qlogis ~ 3.0851335687675
#> f_DMTA_tffm0_1_qlogis = -2.09240906629456
#> eta.f_DMTA_tffm0_1_qlogis ~ 0.3
#> f_DMTA_tffm0_2_qlogis = -2.18057573598794
#> eta.f_DMTA_tffm0_2_qlogis ~ 0.3
#> f_DMTA_tffm0_3_qlogis = -2.14267187609763
#> eta.f_DMTA_tffm0_3_qlogis ~ 0.3
#> sigma_low_DMTA = 0.697933852349996
#> rsd_high_DMTA = 0.0257724286053519
#> sigma_low_M23 = 0.697933852349996
#> rsd_high_M23 = 0.0257724286053519
#> sigma_low_M27 = 0.697933852349996
#> rsd_high_M27 = 0.0257724286053519
#> sigma_low_M31 = 0.697933852349996
#> rsd_high_M31 = 0.0257724286053519
#> })
#> model({
#> DMTA_0_model = DMTA_0 + eta.DMTA_0
#> DMTA(0) = DMTA_0_model
#> k_M23 = exp(log_k_M23 + eta.log_k_M23)
#> k_M27 = exp(log_k_M27 + eta.log_k_M27)
#> k_M31 = exp(log_k_M31 + eta.log_k_M31)
#> k1 = exp(log_k1 + eta.log_k1)
#> k2 = exp(log_k2 + eta.log_k2)
#> g = expit(g_qlogis + eta.g_qlogis)
#> f_DMTA_tffm0_1 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis)
#> f_DMTA_tffm0_2 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis)
#> f_DMTA_tffm0_3 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis)
#> f_DMTA_to_M23 = f_DMTA_tffm0_1
#> f_DMTA_to_M27 = f_DMTA_tffm0_2 * (1 - f_DMTA_tffm0_1)
#> f_DMTA_to_M31 = f_DMTA_tffm0_3 * (1 - f_DMTA_tffm0_2) *
#> (1 - f_DMTA_tffm0_1)
#> d/dt(DMTA) = -((k1 * g * exp(-k1 * time) + k2 * (1 -
#> g) * exp(-k2 * time))/(g * exp(-k1 * time) + (1 -
#> g) * exp(-k2 * time))) * DMTA
#> d/dt(M23) = +f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) +
#> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
#> (1 - g) * exp(-k2 * time))) * DMTA - k_M23 * M23
#> d/dt(M27) = +f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) +
#> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
#> (1 - g) * exp(-k2 * time))) * DMTA - k_M27 * M27 +
#> k_M31 * M31
#> d/dt(M31) = +f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) +
#> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
#> (1 - g) * exp(-k2 * time))) * DMTA - k_M31 * M31
#> DMTA ~ add(sigma_low_DMTA) + prop(rsd_high_DMTA)
#> M23 ~ add(sigma_low_M23) + prop(rsd_high_M23)
#> M27 ~ add(sigma_low_M27) + prop(rsd_high_M27)
#> M31 ~ add(sigma_low_M31) + prop(rsd_high_M31)
#> })
#> }
#> <environment: 0x555559bfc940></div><div class='input'><span class='co'># The focei fit takes about four minutes on my system</span>
<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span>
<span class='va'>f_dmta_nlmixr_focei</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
control <span class='op'>=</span> <span class='fu'>nlmixr</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/foceiControl.html'>foceiControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>500</span><span class='op'>)</span><span class='op'>)</span>
<span class='op'>)</span>
</div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ calculate jacobian</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:02
#> </div><div class='output co'>#> <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:04
#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:01
#> </div><div class='output co'>#> <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:09
#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:07
#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:07
#> </div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:00
#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#> [====|====|====|====|====|====|====|====|====|====] 0:00:00
#> </div><div class='output co'>#> <span class='message'>→ compiling inner model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> [1] "CMT"</div><div class='output co'>#> <span class='message'>RxODE 1.1.0 using 8 threads (see ?getRxThreads)</span>
#> <span class='message'> no cache: create with `rxCreateCache()`</span></div><div class='output co'>#> <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
#> F: Forward difference gradient approximation
#> C: Central difference gradient approximation
#> M: Mixed forward and central difference gradient approximation
#> Unscaled parameters for Omegas=chol(solve(omega));
#> Diagonals are transformed, as specified by foceiControl(diagXform=)
#> |-----+---------------+-----------+-----------+-----------+-----------|
#> | #| Objective Fun | DMTA_0 | log_k_M23 | log_k_M27 | log_k_M31 |
#> |.....................| log_k1 | log_k2 | g_qlogis |f_DMTA_tffm0_1_qlogis |
#> |.....................|f_DMTA_tffm0_2_qlogis |f_DMTA_tffm0_3_qlogis | sigma_low | rsd_high |
#> |.....................| o1 | o2 | o3 | o4 |
#> |.....................| o5 | o6 | o7 | o8 |
#> <span style='text-decoration: underline;'>|.....................| o9 | o10 |...........|...........|</span>
#> calculating covariance matrix
#> done</div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='output co'>#> <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#> <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#> <span class='warning'>Warning: S matrix non-positive definite</span></div><div class='output co'>#> <span class='warning'>Warning: using R matrix to calculate covariance</span></div><div class='output co'>#> <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='output co'>#> user system elapsed
#> 227.223 8.444 235.624 </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_focei</span><span class='op'>)</span>
</div><div class='output co'>#> nlmixr version used for fitting: 2.0.4
#> mkin version used for pre-fitting: 1.0.5
#> R version used for fitting: 4.1.0
#> Date of fit: Thu Jul 29 11:45:46 2021
#> Date of summary: Thu Jul 29 11:45:46 2021
#>
#> Equations:
#> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
#> time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
#> * DMTA
#> d_M23/dt = + f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
#> exp(-k2 * time))) * DMTA - k_M23 * M23
#> d_M27/dt = + f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
#> exp(-k2 * time))) * DMTA - k_M27 * M27 + k_M31 * M31
#> d_M31/dt = + f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
#> exp(-k2 * time))) * DMTA - k_M31 * M31
#>
#> Data:
#> 568 observations of 4 variable(s) grouped in 6 datasets
#>
#> Degradation model predictions using RxODE
#>
#> Fitted in 235.457 s
#>
#> Variance model: Two-component variance function
#>
#> Mean of starting values for individual parameters:
#> DMTA_0 log_k_M23 log_k_M27 log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2
#> 98.7698 -3.9216 -4.3377 -4.2477 0.1380 0.1393
#> f_DMTA_ilr_3 log_k1 log_k2 g_qlogis
#> -1.7571 -2.2341 -3.7763 0.4502
#>
#> Mean of starting values for error model parameters:
#> sigma_low rsd_high
#> 0.69793 0.02577
#>
#> Fixed degradation parameter values:
#> None
#>
#> Results:
#>
#> Likelihood calculated by focei
#> AIC BIC logLik
#> 1936 2031 -945.9
#>
#> Optimised parameters:
#> est. lower upper
#> DMTA_0 98.7698 98.7356 98.8039
#> log_k_M23 -3.9216 -3.9235 -3.9197
#> log_k_M27 -4.3377 -4.3398 -4.3357
#> log_k_M31 -4.2477 -4.2497 -4.2457
#> log_k1 -2.2341 -2.2353 -2.2329
#> log_k2 -3.7763 -3.7781 -3.7744
#> g_qlogis 0.4502 0.4496 0.4507
#> f_DMTA_tffm0_1_qlogis -2.0924 -2.0936 -2.0912
#> f_DMTA_tffm0_2_qlogis -2.1806 -2.1818 -2.1794
#> f_DMTA_tffm0_3_qlogis -2.1427 -2.1439 -2.1415
#>
#> Correlation:
#> DMTA_0 l__M23 l__M27 l__M31 log_k1 log_k2 g_qlgs
#> log_k_M23 0
#> log_k_M27 0 0
#> log_k_M31 0 0 0
#> log_k1 0 0 0 0
#> log_k2 0 0 0 0 0
#> g_qlogis 0 0 0 0 0 0
#> f_DMTA_tffm0_1_qlogis 0 0 0 0 0 0 0
#> f_DMTA_tffm0_2_qlogis 0 0 0 0 0 0 0
#> f_DMTA_tffm0_3_qlogis 0 0 0 0 0 0 0
#> f_DMTA_0_1 f_DMTA_0_2
#> log_k_M23
#> log_k_M27
#> log_k_M31
#> log_k1
#> log_k2
#> g_qlogis
#> f_DMTA_tffm0_1_qlogis
#> f_DMTA_tffm0_2_qlogis 0
#> f_DMTA_tffm0_3_qlogis 0 0
#>
#> Random effects (omega):
#> eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31
#> eta.DMTA_0 2.352 0.0000 0.0000 0.0000
#> eta.log_k_M23 0.000 0.5493 0.0000 0.0000
#> eta.log_k_M27 0.000 0.0000 0.8645 0.0000
#> eta.log_k_M31 0.000 0.0000 0.0000 0.7503
#> eta.log_k1 0.000 0.0000 0.0000 0.0000
#> eta.log_k2 0.000 0.0000 0.0000 0.0000
#> eta.g_qlogis 0.000 0.0000 0.0000 0.0000
#> eta.f_DMTA_tffm0_1_qlogis 0.000 0.0000 0.0000 0.0000
#> eta.f_DMTA_tffm0_2_qlogis 0.000 0.0000 0.0000 0.0000
#> eta.f_DMTA_tffm0_3_qlogis 0.000 0.0000 0.0000 0.0000
#> eta.log_k1 eta.log_k2 eta.g_qlogis
#> eta.DMTA_0 0.000 0.000 0.000
#> eta.log_k_M23 0.000 0.000 0.000
#> eta.log_k_M27 0.000 0.000 0.000
#> eta.log_k_M31 0.000 0.000 0.000
#> eta.log_k1 0.903 0.000 0.000
#> eta.log_k2 0.000 1.577 0.000
#> eta.g_qlogis 0.000 0.000 3.085
#> eta.f_DMTA_tffm0_1_qlogis 0.000 0.000 0.000
#> eta.f_DMTA_tffm0_2_qlogis 0.000 0.000 0.000
#> eta.f_DMTA_tffm0_3_qlogis 0.000 0.000 0.000
#> eta.f_DMTA_tffm0_1_qlogis eta.f_DMTA_tffm0_2_qlogis
#> eta.DMTA_0 0.0 0.0
#> eta.log_k_M23 0.0 0.0
#> eta.log_k_M27 0.0 0.0
#> eta.log_k_M31 0.0 0.0
#> eta.log_k1 0.0 0.0
#> eta.log_k2 0.0 0.0
#> eta.g_qlogis 0.0 0.0
#> eta.f_DMTA_tffm0_1_qlogis 0.3 0.0
#> eta.f_DMTA_tffm0_2_qlogis 0.0 0.3
#> eta.f_DMTA_tffm0_3_qlogis 0.0 0.0
#> eta.f_DMTA_tffm0_3_qlogis
#> eta.DMTA_0 0.0
#> eta.log_k_M23 0.0
#> eta.log_k_M27 0.0
#> eta.log_k_M31 0.0
#> eta.log_k1 0.0
#> eta.log_k2 0.0
#> eta.g_qlogis 0.0
#> eta.f_DMTA_tffm0_1_qlogis 0.0
#> eta.f_DMTA_tffm0_2_qlogis 0.0
#> eta.f_DMTA_tffm0_3_qlogis 0.3
#>
#> Variance model:
#> sigma_low rsd_high
#> 0.69793 0.02577
#>
#> Backtransformed parameters:
#> est. lower upper
#> DMTA_0 98.76976 98.73563 98.80390
#> k_M23 0.01981 0.01977 0.01985
#> k_M27 0.01307 0.01304 0.01309
#> k_M31 0.01430 0.01427 0.01433
#> f_DMTA_to_M23 0.10984 NA NA
#> f_DMTA_to_M27 0.09036 NA NA
#> f_DMTA_to_M31 0.08399 NA NA
#> k1 0.10709 0.10696 0.10722
#> k2 0.02291 0.02287 0.02295
#> g 0.61068 0.61055 0.61081
#>
#> Resulting formation fractions:
#> ff
#> DMTA_M23 0.10984
#> DMTA_M27 0.09036
#> DMTA_M31 0.08399
#> DMTA_sink 0.71581
#>
#> Estimated disappearance times:
#> DT50 DT90 DT50back DT50_k1 DT50_k2
#> DMTA 10.66 59.78 18 6.473 30.26
#> M23 34.99 116.24 NA NA NA
#> M27 53.05 176.23 NA NA NA
#> M31 48.48 161.05 NA NA NA</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_focei</span><span class='op'>)</span>
</div><div class='img'><img src='dimethenamid_2018-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># Using saemix takes about 18 minutes</span>
<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span>
<span class='va'>f_dmta_saemix</span> <span class='op'><-</span> <span class='fu'><a href='saem.html'>saem</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='op'>)</span>
</div><div class='output co'>#> Running main SAEM algorithm
#> [1] "Thu Jul 29 11:45:47 2021"
#> ....
#> Minimisation finished
#> [1] "Thu Jul 29 12:04:25 2021"</div><div class='output co'>#> user system elapsed
#> 1185.594 0.028 1185.687 </div><div class='input'>
<span class='co'># nlmixr with est = "saem" is pretty fast with default iteration numbers, most</span>
<span class='co'># of the time (about 2.5 minutes) is spent for calculating the log likelihood at the end</span>
<span class='co'># The likelihood calculated for the nlmixr fit is much lower than that found by saemix</span>
<span class='co'># Also, the trace plot and the plot of the individual predictions is not</span>
<span class='co'># convincing for the parent. It seems we are fitting an overparameterised</span>
<span class='co'># model, so the result we get strongly depends on starting parameters and control settings.</span>
<span class='fu'><a href='https://rdrr.io/r/base/system.time.html'>system.time</a></span><span class='op'>(</span>
<span class='va'>f_dmta_nlmixr_saem</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
control <span class='op'>=</span> <span class='fu'>nlmixr</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/saemControl.html'>saemControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>500</span>, logLik <span class='op'>=</span> <span class='cn'>TRUE</span>, nmc <span class='op'>=</span> <span class='fl'>9</span><span class='op'>)</span><span class='op'>)</span>
<span class='op'>)</span>
</div><div class='output co'>#> <span class='message'>With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#> <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'>→ generate SAEM model</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> 1: 98.3427 -3.5148 -3.3187 -3.7728 -2.1163 -2.8457 0.9482 -2.8064 -2.7412 -2.8745 2.7912 0.6805 0.8213 0.8055 0.8578 1.4980 2.9309 0.2850 0.2854 0.2850 4.0990 0.3821 3.5349 0.6537 5.4143 0.0002 4.5093 0.1905
#> 500: 97.8277 -4.3506 -4.0318 -4.1520 -3.0553 -3.5843 1.1326 -2.0873 -2.0421 -2.0751 0.2960 1.2515 0.2531 0.3807 0.7928 0.8863 6.5211 0.1433 0.1082 0.3353 0.8960 0.0470 0.7501 0.0475 0.9527 0.0281 0.7321 0.0594</div><div class='output co'>#> <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#> </div><div class='output co'>#> <span class='message'>→ creating full model...</span></div><div class='output co'>#> <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#> <span class='message'> </span></div><div class='output co'>#> <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#> <span class='message'>Needed Covariates:</span></div><div class='output co'>#> [1] "CMT"</div><div class='output co'>#> <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#> <span class='message'>done</span></div><div class='output co'>#> user system elapsed
#> 809.956 4.286 156.438 </div><div class='input'><span class='fu'>traceplot</span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>$</span><span class='va'>nm</span><span class='op'>)</span>
</div><div class='output co'>#> <span class='error'>Error in traceplot(f_dmta_nlmixr_saem$nm): could not find function "traceplot"</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>)</span>
</div><div class='output co'>#> nlmixr version used for fitting: 2.0.4
#> mkin version used for pre-fitting: 1.0.5
#> R version used for fitting: 4.1.0
#> Date of fit: Thu Jul 29 12:08:09 2021
#> Date of summary: Thu Jul 29 12:08:09 2021
#>
#> Equations:
#> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
#> time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
#> * DMTA
#> d_M23/dt = + f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
#> exp(-k2 * time))) * DMTA - k_M23 * M23
#> d_M27/dt = + f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
#> exp(-k2 * time))) * DMTA - k_M27 * M27 + k_M31 * M31
#> d_M31/dt = + f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
#> exp(-k2 * time))) * DMTA - k_M31 * M31
#>
#> Data:
#> 568 observations of 4 variable(s) grouped in 6 datasets
#>
#> Degradation model predictions using RxODE
#>
#> Fitted in 156.17 s
#>
#> Variance model: Two-component variance function
#>
#> Mean of starting values for individual parameters:
#> DMTA_0 log_k_M23 log_k_M27 log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2
#> 98.7698 -3.9216 -4.3377 -4.2477 0.1380 0.1393
#> f_DMTA_ilr_3 log_k1 log_k2 g_qlogis
#> -1.7571 -2.2341 -3.7763 0.4502
#>
#> Mean of starting values for error model parameters:
#> sigma_low_DMTA rsd_high_DMTA sigma_low_M23 rsd_high_M23 sigma_low_M27
#> 0.69793 0.02577 0.69793 0.02577 0.69793
#> rsd_high_M27 sigma_low_M31 rsd_high_M31
#> 0.02577 0.69793 0.02577
#>
#> Fixed degradation parameter values:
#> None
#>
#> Results:
#>
#> Likelihood calculated by focei
#> AIC BIC logLik
#> 2036 2157 -989.8
#>
#> Optimised parameters:
#> est. lower upper
#> DMTA_0 97.828 96.121 99.535
#> log_k_M23 -4.351 -5.300 -3.401
#> log_k_M27 -4.032 -4.470 -3.594
#> log_k_M31 -4.152 -4.689 -3.615
#> log_k1 -3.055 -3.785 -2.325
#> log_k2 -3.584 -4.517 -2.651
#> g_qlogis 1.133 -2.165 4.430
#> f_DMTA_tffm0_1_qlogis -2.087 -2.407 -1.768
#> f_DMTA_tffm0_2_qlogis -2.042 -2.336 -1.748
#> f_DMTA_tffm0_3_qlogis -2.075 -2.557 -1.593
#>
#> Correlation:
#> DMTA_0 l__M23 l__M27 l__M31 log_k1 log_k2 g_qlgs
#> log_k_M23 -0.031
#> log_k_M27 -0.050 0.004
#> log_k_M31 -0.032 0.003 0.078
#> log_k1 0.014 -0.002 -0.002 -0.001
#> log_k2 0.059 0.006 -0.001 0.002 -0.037
#> g_qlogis -0.077 0.005 0.009 0.004 0.035 -0.201
#> f_DMTA_tffm0_1_qlogis -0.104 0.066 0.009 0.006 0.000 -0.011 0.014
#> f_DMTA_tffm0_2_qlogis -0.120 0.013 0.081 -0.033 -0.002 -0.013 0.017
#> f_DMTA_tffm0_3_qlogis -0.086 0.010 0.060 0.078 -0.002 -0.005 0.010
#> f_DMTA_0_1 f_DMTA_0_2
#> log_k_M23
#> log_k_M27
#> log_k_M31
#> log_k1
#> log_k2
#> g_qlogis
#> f_DMTA_tffm0_1_qlogis
#> f_DMTA_tffm0_2_qlogis 0.026
#> f_DMTA_tffm0_3_qlogis 0.019 0.002
#>
#> Random effects (omega):
#> eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31
#> eta.DMTA_0 0.296 0.000 0.0000 0.0000
#> eta.log_k_M23 0.000 1.252 0.0000 0.0000
#> eta.log_k_M27 0.000 0.000 0.2531 0.0000
#> eta.log_k_M31 0.000 0.000 0.0000 0.3807
#> eta.log_k1 0.000 0.000 0.0000 0.0000
#> eta.log_k2 0.000 0.000 0.0000 0.0000
#> eta.g_qlogis 0.000 0.000 0.0000 0.0000
#> eta.f_DMTA_tffm0_1_qlogis 0.000 0.000 0.0000 0.0000
#> eta.f_DMTA_tffm0_2_qlogis 0.000 0.000 0.0000 0.0000
#> eta.f_DMTA_tffm0_3_qlogis 0.000 0.000 0.0000 0.0000
#> eta.log_k1 eta.log_k2 eta.g_qlogis
#> eta.DMTA_0 0.0000 0.0000 0.000
#> eta.log_k_M23 0.0000 0.0000 0.000
#> eta.log_k_M27 0.0000 0.0000 0.000
#> eta.log_k_M31 0.0000 0.0000 0.000
#> eta.log_k1 0.7928 0.0000 0.000
#> eta.log_k2 0.0000 0.8863 0.000
#> eta.g_qlogis 0.0000 0.0000 6.521
#> eta.f_DMTA_tffm0_1_qlogis 0.0000 0.0000 0.000
#> eta.f_DMTA_tffm0_2_qlogis 0.0000 0.0000 0.000
#> eta.f_DMTA_tffm0_3_qlogis 0.0000 0.0000 0.000
#> eta.f_DMTA_tffm0_1_qlogis eta.f_DMTA_tffm0_2_qlogis
#> eta.DMTA_0 0.0000 0.0000
#> eta.log_k_M23 0.0000 0.0000
#> eta.log_k_M27 0.0000 0.0000
#> eta.log_k_M31 0.0000 0.0000
#> eta.log_k1 0.0000 0.0000
#> eta.log_k2 0.0000 0.0000
#> eta.g_qlogis 0.0000 0.0000
#> eta.f_DMTA_tffm0_1_qlogis 0.1433 0.0000
#> eta.f_DMTA_tffm0_2_qlogis 0.0000 0.1082
#> eta.f_DMTA_tffm0_3_qlogis 0.0000 0.0000
#> eta.f_DMTA_tffm0_3_qlogis
#> eta.DMTA_0 0.0000
#> eta.log_k_M23 0.0000
#> eta.log_k_M27 0.0000
#> eta.log_k_M31 0.0000
#> eta.log_k1 0.0000
#> eta.log_k2 0.0000
#> eta.g_qlogis 0.0000
#> eta.f_DMTA_tffm0_1_qlogis 0.0000
#> eta.f_DMTA_tffm0_2_qlogis 0.0000
#> eta.f_DMTA_tffm0_3_qlogis 0.3353
#>
#> Variance model:
#> sigma_low_DMTA rsd_high_DMTA sigma_low_M23 rsd_high_M23 sigma_low_M27
#> 0.89603 0.04704 0.75015 0.04753 0.95265
#> rsd_high_M27 sigma_low_M31 rsd_high_M31
#> 0.02810 0.73212 0.05942
#>
#> Backtransformed parameters:
#> est. lower upper
#> DMTA_0 97.82774 96.120503 99.53498
#> k_M23 0.01290 0.004991 0.03334
#> k_M27 0.01774 0.011451 0.02749
#> k_M31 0.01573 0.009195 0.02692
#> f_DMTA_to_M23 0.11033 NA NA
#> f_DMTA_to_M27 0.10218 NA NA
#> f_DMTA_to_M31 0.08784 NA NA
#> k1 0.04711 0.022707 0.09773
#> k2 0.02775 0.010918 0.07056
#> g 0.75632 0.102960 0.98823
#>
#> Resulting formation fractions:
#> ff
#> DMTA_M23 0.11033
#> DMTA_M27 0.10218
#> DMTA_M31 0.08784
#> DMTA_sink 0.69965
#>
#> Estimated disappearance times:
#> DT50 DT90 DT50back DT50_k1 DT50_k2
#> DMTA 16.59 57.44 17.29 14.71 24.97
#> M23 53.74 178.51 NA NA NA
#> M27 39.07 129.78 NA NA NA
#> M31 44.06 146.36 NA NA NA</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_saem</span><span class='op'>)</span>
</div><div class='img'><img src='dimethenamid_2018-2.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># }</span>
</div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top">
<h2 data-toc-skip>Contents</h2>
</nav>
</div>
</div>
<footer>
<div class="copyright">
<p>Developed by Johannes Ranke.</p>
</div>
<div class="pkgdown">
<p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
</div>
</footer>
</div>
</body>
</html>
|