1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
|
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Aerobic soil degradation data on dimethenamid and dimethenamid-P from the EU assessment in 2018 — dimethenamid_2018 • mkin</title><!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"><script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css"><script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"><script src="../pkgdown.js"></script><meta property="og:title" content="Aerobic soil degradation data on dimethenamid and dimethenamid-P from the EU assessment in 2018 — dimethenamid_2018"><meta property="og:description" content="The datasets were extracted from the active substance evaluation dossier
published by EFSA. Kinetic evaluations shown for these datasets are intended
to illustrate and advance kinetic modelling. The fact that these data and
some results are shown here does not imply a license to use them in the
context of pesticide registrations, as the use of the data may be
constrained by data protection regulations."><meta name="robots" content="noindex"><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]--></head><body data-spy="scroll" data-target="#toc">
<div class="container template-reference-topic">
<header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
<span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.1.0</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav"><li>
<a href="../reference/index.html">Functions and data</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Articles
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu"><li>
<a href="../articles/mkin.html">Introduction to mkin</a>
</li>
<li>
<a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
</li>
<li>
<a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
</li>
<li>
<a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
</li>
<li>
<a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
</li>
<li>
<a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
</li>
<li>
<a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
</li>
<li>
<a href="../articles/web_only/benchmarks.html">Some benchmark timings</a>
</li>
</ul></li>
<li>
<a href="../news/index.html">News</a>
</li>
</ul><ul class="nav navbar-nav navbar-right"><li>
<a href="https://github.com/jranke/mkin/" class="external-link">
<span class="fab fa-github fa-lg"></span>
</a>
</li>
</ul></div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
</header><div class="row">
<div class="col-md-9 contents">
<div class="page-header">
<h1>Aerobic soil degradation data on dimethenamid and dimethenamid-P from the EU assessment in 2018</h1>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/R/dimethenamid_2018.R" class="external-link"><code>R/dimethenamid_2018.R</code></a></small>
<div class="hidden name"><code>dimethenamid_2018.Rd</code></div>
</div>
<div class="ref-description">
<p>The datasets were extracted from the active substance evaluation dossier
published by EFSA. Kinetic evaluations shown for these datasets are intended
to illustrate and advance kinetic modelling. The fact that these data and
some results are shown here does not imply a license to use them in the
context of pesticide registrations, as the use of the data may be
constrained by data protection regulations.</p>
</div>
<div id="ref-usage">
<div class="sourceCode"><pre class="sourceCode r"><code><span class="va">dimethenamid_2018</span></code></pre></div>
</div>
<div id="format">
<h2>Format</h2>
<p>An <a href="mkindsg.html">mkindsg</a> object grouping seven datasets with some meta information</p>
</div>
<div id="source">
<h2>Source</h2>
<p>Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria (2018)
Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour
Rev. 2 - November 2017
<a href="https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716" class="external-link">https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716</a></p>
</div>
<div id="details">
<h2>Details</h2>
<p>The R code used to create this data object is installed with this package
in the 'dataset_generation' directory. In the code, page numbers are given for
specific pieces of information in the comments.</p>
</div>
<div id="ref-examples">
<h2>Examples</h2>
<div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">dimethenamid_2018</span><span class="op">)</span></span>
<span class="r-out co"><span class="r-pr">#></span> <mkindsg> holding 7 mkinds objects</span>
<span class="r-out co"><span class="r-pr">#></span> Title $title: Aerobic soil degradation data on dimethenamid-P from the EU assessment in 2018 </span>
<span class="r-out co"><span class="r-pr">#></span> Occurrence of observed compounds $observed_n:</span>
<span class="r-out co"><span class="r-pr">#></span> DMTAP M23 M27 M31 DMTA </span>
<span class="r-out co"><span class="r-pr">#></span> 3 7 7 7 4 </span>
<span class="r-out co"><span class="r-pr">#></span> Time normalisation factors $f_time_norm:</span>
<span class="r-out co"><span class="r-pr">#></span> [1] 1.0000000 0.9706477 1.2284784 1.2284784 0.6233856 0.7678922 0.6733938</span>
<span class="r-out co"><span class="r-pr">#></span> Meta information $meta:</span>
<span class="r-out co"><span class="r-pr">#></span> study usda_soil_type study_moisture_ref_type rel_moisture</span>
<span class="r-out co"><span class="r-pr">#></span> Calke Unsworth 2014 Sandy loam pF2 1.00</span>
<span class="r-out co"><span class="r-pr">#></span> Borstel Staudenmaier 2009 Sand pF1 0.50</span>
<span class="r-out co"><span class="r-pr">#></span> Elliot 1 Wendt 1997 Clay loam pF2.5 0.75</span>
<span class="r-out co"><span class="r-pr">#></span> Elliot 2 Wendt 1997 Clay loam pF2.5 0.75</span>
<span class="r-out co"><span class="r-pr">#></span> Flaach König 1996 Sandy clay loam pF1 0.40</span>
<span class="r-out co"><span class="r-pr">#></span> BBA 2.2 König 1995 Loamy sand pF1 0.40</span>
<span class="r-out co"><span class="r-pr">#></span> BBA 2.3 König 1995 Sandy loam pF1 0.40</span>
<span class="r-out co"><span class="r-pr">#></span> study_ref_moisture temperature</span>
<span class="r-out co"><span class="r-pr">#></span> Calke NA 20</span>
<span class="r-out co"><span class="r-pr">#></span> Borstel 23.00 20</span>
<span class="r-out co"><span class="r-pr">#></span> Elliot 1 33.37 23</span>
<span class="r-out co"><span class="r-pr">#></span> Elliot 2 33.37 23</span>
<span class="r-out co"><span class="r-pr">#></span> Flaach NA 20</span>
<span class="r-out co"><span class="r-pr">#></span> BBA 2.2 NA 20</span>
<span class="r-out co"><span class="r-pr">#></span> BBA 2.3 NA 20</span>
<span class="r-in"><span class="va">dmta_ds</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="fl">1</span><span class="op">:</span><span class="fl">7</span>, <span class="kw">function</span><span class="op">(</span><span class="va">i</span><span class="op">)</span> <span class="op">{</span></span>
<span class="r-in"> <span class="va">ds_i</span> <span class="op"><-</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span><span class="op">[[</span><span class="va">i</span><span class="op">]</span><span class="op">]</span><span class="op">$</span><span class="va">data</span></span>
<span class="r-in"> <span class="va">ds_i</span><span class="op">[</span><span class="va">ds_i</span><span class="op">$</span><span class="va">name</span> <span class="op">==</span> <span class="st">"DMTAP"</span>, <span class="st">"name"</span><span class="op">]</span> <span class="op"><-</span> <span class="st">"DMTA"</span></span>
<span class="r-in"> <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op"><-</span> <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op">*</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">f_time_norm</span><span class="op">[</span><span class="va">i</span><span class="op">]</span></span>
<span class="r-in"> <span class="va">ds_i</span></span>
<span class="r-in"><span class="op">}</span><span class="op">)</span></span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">sapply</a></span><span class="op">(</span><span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span>, <span class="kw">function</span><span class="op">(</span><span class="va">ds</span><span class="op">)</span> <span class="va">ds</span><span class="op">$</span><span class="va">title</span><span class="op">)</span></span>
<span class="r-in"><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/cbind.html" class="external-link">rbind</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span>, <span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span>
<span class="r-in"><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span>
<span class="r-in"><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span>
<span class="r-in"><span class="co"># \dontrun{</span></span>
<span class="r-in"><span class="va">dfop_sfo3_plus</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span></span>
<span class="r-in"> DMTA <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M23"</span>, <span class="st">"M27"</span>, <span class="st">"M31"</span><span class="op">)</span><span class="op">)</span>,</span>
<span class="r-in"> M23 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span>
<span class="r-in"> M27 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span>
<span class="r-in"> M31 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"M27"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span>
<span class="r-in"> quiet <span class="op">=</span> <span class="cn">TRUE</span></span>
<span class="r-in"><span class="op">)</span></span>
<span class="r-in"><span class="va">f_dmta_mkin_tc</span> <span class="op"><-</span> <span class="fu"><a href="mmkin.html">mmkin</a></span><span class="op">(</span></span>
<span class="r-in"> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="st">"DFOP-SFO3+"</span> <span class="op">=</span> <span class="va">dfop_sfo3_plus</span><span class="op">)</span>,</span>
<span class="r-in"> <span class="va">dmta_ds</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span>
<span class="r-in"><span class="fu"><a href="nlmixr.mmkin.html">nlmixr_model</a></span><span class="op">(</span><span class="va">f_dmta_mkin_tc</span><span class="op">)</span></span>
<span class="r-msg co"><span class="r-pr">#></span> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span>
<span class="r-wrn co"><span class="r-pr">#></span> <span class="warning">Warning: </span>number of items to replace is not a multiple of replacement length</span>
<span class="r-out co"><span class="r-pr">#></span> function () </span>
<span class="r-out co"><span class="r-pr">#></span> {</span>
<span class="r-out co"><span class="r-pr">#></span> ini({</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 = 99</span>
<span class="r-out co"><span class="r-pr">#></span> eta.DMTA_0 ~ 2.3</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M23 = -3.9</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M23 ~ 0.55</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M27 = -4.3</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M27 ~ 0.86</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M31 = -4.2</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M31 ~ 0.75</span>
<span class="r-out co"><span class="r-pr">#></span> log_k1 = -2.2</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k1 ~ 0.9</span>
<span class="r-out co"><span class="r-pr">#></span> log_k2 = -3.8</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k2 ~ 1.6</span>
<span class="r-out co"><span class="r-pr">#></span> g_qlogis = 0.44</span>
<span class="r-out co"><span class="r-pr">#></span> eta.g_qlogis ~ 3.1</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_1_qlogis = -2.1</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_1_qlogis ~ 0.3</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_2_qlogis = -2.2</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_2_qlogis ~ 0.3</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_3_qlogis = -2.1</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_3_qlogis ~ 0.3</span>
<span class="r-out co"><span class="r-pr">#></span> sigma_low_DMTA = 0.7</span>
<span class="r-out co"><span class="r-pr">#></span> rsd_high_DMTA = 0.026</span>
<span class="r-out co"><span class="r-pr">#></span> sigma_low_M23 = 0.7</span>
<span class="r-out co"><span class="r-pr">#></span> rsd_high_M23 = 0.026</span>
<span class="r-out co"><span class="r-pr">#></span> sigma_low_M27 = 0.7</span>
<span class="r-out co"><span class="r-pr">#></span> rsd_high_M27 = 0.026</span>
<span class="r-out co"><span class="r-pr">#></span> sigma_low_M31 = 0.7</span>
<span class="r-out co"><span class="r-pr">#></span> rsd_high_M31 = 0.026</span>
<span class="r-out co"><span class="r-pr">#></span> })</span>
<span class="r-out co"><span class="r-pr">#></span> model({</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0_model = DMTA_0 + eta.DMTA_0</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA(0) = DMTA_0_model</span>
<span class="r-out co"><span class="r-pr">#></span> k_M23 = exp(log_k_M23 + eta.log_k_M23)</span>
<span class="r-out co"><span class="r-pr">#></span> k_M27 = exp(log_k_M27 + eta.log_k_M27)</span>
<span class="r-out co"><span class="r-pr">#></span> k_M31 = exp(log_k_M31 + eta.log_k_M31)</span>
<span class="r-out co"><span class="r-pr">#></span> k1 = exp(log_k1 + eta.log_k1)</span>
<span class="r-out co"><span class="r-pr">#></span> k2 = exp(log_k2 + eta.log_k2)</span>
<span class="r-out co"><span class="r-pr">#></span> g = expit(g_qlogis + eta.g_qlogis)</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M23 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis)</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M23 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis)</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M23 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis)</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M23 = f_DMTA_tffm0_1</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M27 = f_DMTA_tffm0_2 * (1 - f_DMTA_tffm0_1)</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M31 = f_DMTA_tffm0_3 * (1 - f_DMTA_tffm0_2) * </span>
<span class="r-out co"><span class="r-pr">#></span> (1 - f_DMTA_tffm0_1)</span>
<span class="r-out co"><span class="r-pr">#></span> d/dt(DMTA) = -((k1 * g * exp(-k1 * time) + k2 * (1 - </span>
<span class="r-out co"><span class="r-pr">#></span> g) * exp(-k2 * time))/(g * exp(-k1 * time) + (1 - </span>
<span class="r-out co"><span class="r-pr">#></span> g) * exp(-k2 * time))) * DMTA</span>
<span class="r-out co"><span class="r-pr">#></span> d/dt(M23) = +f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + </span>
<span class="r-out co"><span class="r-pr">#></span> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) + </span>
<span class="r-out co"><span class="r-pr">#></span> (1 - g) * exp(-k2 * time))) * DMTA - k_M23 * M23</span>
<span class="r-out co"><span class="r-pr">#></span> d/dt(M27) = +f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + </span>
<span class="r-out co"><span class="r-pr">#></span> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) + </span>
<span class="r-out co"><span class="r-pr">#></span> (1 - g) * exp(-k2 * time))) * DMTA - k_M27 * M27 + </span>
<span class="r-out co"><span class="r-pr">#></span> k_M31 * M31</span>
<span class="r-out co"><span class="r-pr">#></span> d/dt(M31) = +f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + </span>
<span class="r-out co"><span class="r-pr">#></span> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) + </span>
<span class="r-out co"><span class="r-pr">#></span> (1 - g) * exp(-k2 * time))) * DMTA - k_M31 * M31</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA ~ add(sigma_low_DMTA) + prop(rsd_high_DMTA)</span>
<span class="r-out co"><span class="r-pr">#></span> M23 ~ add(sigma_low_M23) + prop(rsd_high_M23)</span>
<span class="r-out co"><span class="r-pr">#></span> M27 ~ add(sigma_low_M27) + prop(rsd_high_M27)</span>
<span class="r-out co"><span class="r-pr">#></span> M31 ~ add(sigma_low_M31) + prop(rsd_high_M31)</span>
<span class="r-out co"><span class="r-pr">#></span> })</span>
<span class="r-out co"><span class="r-pr">#></span> }</span>
<span class="r-out co"><span class="r-pr">#></span> <environment: 0x55555fca3790></span>
<span class="r-in"><span class="co"># The focei fit takes about four minutes on my system</span></span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/base/system.time.html" class="external-link">system.time</a></span><span class="op">(</span></span>
<span class="r-in"> <span class="va">f_dmta_nlmixr_focei</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlmixr/man/nlmixr.html" class="external-link">nlmixr</a></span><span class="op">(</span><span class="va">f_dmta_mkin_tc</span>, est <span class="op">=</span> <span class="st">"focei"</span>,</span>
<span class="r-in"> control <span class="op">=</span> <span class="fu">nlmixr</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/nlmixr/man/foceiControl.html" class="external-link">foceiControl</a></span><span class="op">(</span>print <span class="op">=</span> <span class="fl">500</span><span class="op">)</span><span class="op">)</span></span>
<span class="r-in"><span class="op">)</span></span>
<span class="r-wrn co"><span class="r-pr">#></span> <span class="warning">Warning: </span>number of items to replace is not a multiple of replacement length</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BBBB;">ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BBBB;">ℹ</span> Need to run with the source intact to parse comments</span>
<span class="r-msg co"><span class="r-pr">#></span> → creating full model...</span>
<span class="r-msg co"><span class="r-pr">#></span> → pruning branches (`if`/`else`)...</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> → loading into <span style="color: #0000BB;">symengine</span> environment...</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> → creating full model...</span>
<span class="r-msg co"><span class="r-pr">#></span> → pruning branches (`if`/`else`)...</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> → loading into <span style="color: #0000BB;">symengine</span> environment...</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> → calculate jacobian</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:01 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → calculate sensitivities</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:03 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → calculate ∂(f)/∂(η)</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:01 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → calculate ∂(R²)/∂(η)</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:08 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → finding duplicate expressions in inner model...</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:07 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → optimizing duplicate expressions in inner model...</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:06 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → finding duplicate expressions in EBE model...</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:00 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → optimizing duplicate expressions in EBE model...</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:00 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → compiling inner model...</span>
<span class="r-msg co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> → finding duplicate expressions in FD model...</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → optimizing duplicate expressions in FD model...</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → compiling EBE model...</span>
<span class="r-msg co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> → compiling events FD model...</span>
<span class="r-msg co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> Model:</span>
<span class="r-msg co"><span class="r-pr">#></span> cmt(DMTA);</span>
<span class="r-msg co"><span class="r-pr">#></span> cmt(M23);</span>
<span class="r-msg co"><span class="r-pr">#></span> cmt(M27);</span>
<span class="r-msg co"><span class="r-pr">#></span> cmt(M31);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_14~ETA[1]+THETA[1];</span>
<span class="r-msg co"><span class="r-pr">#></span> DMTA(0)=rx_expr_14;</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_15~ETA[5]+THETA[5];</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_16~ETA[7]+THETA[7];</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_17~ETA[6]+THETA[6];</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_24~exp(rx_expr_15);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_25~exp(rx_expr_17);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_29~t*rx_expr_24;</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_30~t*rx_expr_25;</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_31~exp(-(rx_expr_16));</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_35~1+rx_expr_31;</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_40~1/(rx_expr_35);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_42~(rx_expr_40);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_43~1-rx_expr_42;</span>
<span class="r-msg co"><span class="r-pr">#></span> d/dt(DMTA)=-DMTA*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_18~ETA[2]+THETA[2];</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_26~exp(rx_expr_18);</span>
<span class="r-msg co"><span class="r-pr">#></span> d/dt(M23)=-rx_expr_26*M23+DMTA*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_1/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_19~ETA[3]+THETA[3];</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_20~ETA[4]+THETA[4];</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_21~1-f_DMTA_tffm0_1;</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_27~exp(rx_expr_19);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_28~exp(rx_expr_20);</span>
<span class="r-msg co"><span class="r-pr">#></span> d/dt(M27)=-rx_expr_27*M27+rx_expr_28*M31+DMTA*(rx_expr_21)*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_2/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_22~1-f_DMTA_tffm0_2;</span>
<span class="r-msg co"><span class="r-pr">#></span> d/dt(M31)=-rx_expr_28*M31+DMTA*(rx_expr_22)*(rx_expr_21)*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_3/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_0~CMT==4;</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_1~CMT==2;</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_2~CMT==1;</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_3~CMT==3;</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_4~1-(rx_expr_0);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_5~1-(rx_expr_1);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_6~1-(rx_expr_3);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_yj_~(rx_expr_4)*((2*(rx_expr_5)*(rx_expr_2)+2*(rx_expr_1))*(rx_expr_6)+2*(rx_expr_3))+2*(rx_expr_0);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_7~(rx_expr_1);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_8~(rx_expr_3);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_9~(rx_expr_0);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_13~(rx_expr_5);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_32~rx_expr_13*(rx_expr_2);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_lambda_~(rx_expr_4)*((rx_expr_32+rx_expr_7)*(rx_expr_6)+rx_expr_8)+rx_expr_9;</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_hi_~(rx_expr_4)*((rx_expr_32+rx_expr_7)*(rx_expr_6)+rx_expr_8)+rx_expr_9;</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_low_~0;</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_10~M31*(rx_expr_0);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_11~M27*(rx_expr_3);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_12~M23*(rx_expr_1);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_23~DMTA*(rx_expr_5);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_36~rx_expr_23*(rx_expr_2);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_pred_=(rx_expr_4)*((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)));</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_33~Rx_pow_di(THETA[12],2);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_expr_34~Rx_pow_di(THETA[11],2);</span>
<span class="r-msg co"><span class="r-pr">#></span> rx_r_=(rx_expr_4)*((rx_expr_33*Rx_pow_di(((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6)),2)+rx_expr_34)*(rx_expr_3)+((rx_expr_1)*(rx_expr_33*Rx_pow_di(((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2)),2)+rx_expr_34)+(rx_expr_33*Rx_pow_di(((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2)),2)+rx_expr_34)*(rx_expr_5)*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_33*Rx_pow_di(((rx_expr_4)*((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))),2)+rx_expr_34);</span>
<span class="r-msg co"><span class="r-pr">#></span> DMTA_0=THETA[1];</span>
<span class="r-msg co"><span class="r-pr">#></span> log_k_M23=THETA[2];</span>
<span class="r-msg co"><span class="r-pr">#></span> log_k_M27=THETA[3];</span>
<span class="r-msg co"><span class="r-pr">#></span> log_k_M31=THETA[4];</span>
<span class="r-msg co"><span class="r-pr">#></span> log_k1=THETA[5];</span>
<span class="r-msg co"><span class="r-pr">#></span> log_k2=THETA[6];</span>
<span class="r-msg co"><span class="r-pr">#></span> g_qlogis=THETA[7];</span>
<span class="r-msg co"><span class="r-pr">#></span> f_DMTA_tffm0_1_qlogis=THETA[8];</span>
<span class="r-msg co"><span class="r-pr">#></span> f_DMTA_tffm0_2_qlogis=THETA[9];</span>
<span class="r-msg co"><span class="r-pr">#></span> f_DMTA_tffm0_3_qlogis=THETA[10];</span>
<span class="r-msg co"><span class="r-pr">#></span> sigma_low=THETA[11];</span>
<span class="r-msg co"><span class="r-pr">#></span> rsd_high=THETA[12];</span>
<span class="r-msg co"><span class="r-pr">#></span> eta.DMTA_0=ETA[1];</span>
<span class="r-msg co"><span class="r-pr">#></span> eta.log_k_M23=ETA[2];</span>
<span class="r-msg co"><span class="r-pr">#></span> eta.log_k_M27=ETA[3];</span>
<span class="r-msg co"><span class="r-pr">#></span> eta.log_k_M31=ETA[4];</span>
<span class="r-msg co"><span class="r-pr">#></span> eta.log_k1=ETA[5];</span>
<span class="r-msg co"><span class="r-pr">#></span> eta.log_k2=ETA[6];</span>
<span class="r-msg co"><span class="r-pr">#></span> eta.g_qlogis=ETA[7];</span>
<span class="r-msg co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_1_qlogis=ETA[8];</span>
<span class="r-msg co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_2_qlogis=ETA[9];</span>
<span class="r-msg co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_3_qlogis=ETA[10];</span>
<span class="r-msg co"><span class="r-pr">#></span> DMTA_0_model=rx_expr_14;</span>
<span class="r-msg co"><span class="r-pr">#></span> k_M23=rx_expr_26;</span>
<span class="r-msg co"><span class="r-pr">#></span> k_M27=rx_expr_27;</span>
<span class="r-msg co"><span class="r-pr">#></span> k_M31=rx_expr_28;</span>
<span class="r-msg co"><span class="r-pr">#></span> k1=rx_expr_24;</span>
<span class="r-msg co"><span class="r-pr">#></span> k2=rx_expr_25;</span>
<span class="r-msg co"><span class="r-pr">#></span> g=1/(rx_expr_35);</span>
<span class="r-msg co"><span class="r-pr">#></span> f_DMTA_to_M23=1/(1+exp(-(ETA[8]+THETA[8])));</span>
<span class="r-msg co"><span class="r-pr">#></span> f_DMTA_to_M23=1/(1+exp(-(ETA[9]+THETA[9])));</span>
<span class="r-msg co"><span class="r-pr">#></span> f_DMTA_to_M23=1/(1+exp(-(ETA[10]+THETA[10])));</span>
<span class="r-msg co"><span class="r-pr">#></span> f_DMTA_to_M23=f_DMTA_tffm0_1;</span>
<span class="r-msg co"><span class="r-pr">#></span> f_DMTA_to_M27=(rx_expr_21)*f_DMTA_tffm0_2;</span>
<span class="r-msg co"><span class="r-pr">#></span> f_DMTA_to_M31=(rx_expr_22)*(rx_expr_21)*f_DMTA_tffm0_3;</span>
<span class="r-msg co"><span class="r-pr">#></span> tad=tad();</span>
<span class="r-msg co"><span class="r-pr">#></span> dosenum=dosenum();</span>
<span class="r-msg co"><span class="r-pr">#></span> Needed Covariates:</span>
<span class="r-msg co"><span class="r-pr">#></span> [1] "f_DMTA_tffm0_1" "f_DMTA_tffm0_2" "f_DMTA_tffm0_3" "CMT" </span>
<span class="r-err co"><span class="r-pr">#></span> <span class="error">Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop):</span> Not all the covariates are in the dataset.</span>
<span class="r-msg co"><span class="r-pr">#></span> Timing stopped at: 119.8 9.331 129.2</span>
<span class="r-msg co"><span class="r-pr">#></span> Timing stopped at: 120 9.331 129.3</span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">f_dmta_nlmixr_focei</span><span class="op">)</span></span>
<span class="r-err co"><span class="r-pr">#></span> <span class="error">Error in summary(f_dmta_nlmixr_focei):</span> object 'f_dmta_nlmixr_focei' not found</span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_dmta_nlmixr_focei</span><span class="op">)</span></span>
<span class="r-err co"><span class="r-pr">#></span> <span class="error">Error in plot(f_dmta_nlmixr_focei):</span> object 'f_dmta_nlmixr_focei' not found</span>
<span class="r-in"><span class="co"># Using saemix takes about 18 minutes</span></span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/base/system.time.html" class="external-link">system.time</a></span><span class="op">(</span></span>
<span class="r-in"> <span class="va">f_dmta_saemix</span> <span class="op"><-</span> <span class="fu"><a href="saem.html">saem</a></span><span class="op">(</span><span class="va">f_dmta_mkin_tc</span>, test_log_parms <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span class="r-in"><span class="op">)</span></span>
<span class="r-out co"><span class="r-pr">#></span> DINTDY- T (=R1) illegal </span>
<span class="r-out co"><span class="r-pr">#></span> In above message, R1 = 115.507</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> T not in interval TCUR - HU (= R1) to TCUR (=R2) </span>
<span class="r-out co"><span class="r-pr">#></span> In above message, R1 = 112.133, R2 = 113.577</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> DLSODA- At T (=R1), too much accuracy requested </span>
<span class="r-out co"><span class="r-pr">#></span> for precision of machine.. See TOLSF (=R2) </span>
<span class="r-out co"><span class="r-pr">#></span> In above message, R1 = 55.3899, R2 = nan</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-err co"><span class="r-pr">#></span> <span class="error">Error in out[available, var]:</span> (subscript) logical subscript too long</span>
<span class="r-msg co"><span class="r-pr">#></span> Timing stopped at: 11.84 0.008 11.85</span>
<span class="r-msg co"><span class="r-pr">#></span> Timing stopped at: 12.16 0.008 12.17</span>
<span class="r-in"></span>
<span class="r-in"><span class="co"># nlmixr with est = "saem" is pretty fast with default iteration numbers, most</span></span>
<span class="r-in"><span class="co"># of the time (about 2.5 minutes) is spent for calculating the log likelihood at the end</span></span>
<span class="r-in"><span class="co"># The likelihood calculated for the nlmixr fit is much lower than that found by saemix</span></span>
<span class="r-in"><span class="co"># Also, the trace plot and the plot of the individual predictions is not</span></span>
<span class="r-in"><span class="co"># convincing for the parent. It seems we are fitting an overparameterised</span></span>
<span class="r-in"><span class="co"># model, so the result we get strongly depends on starting parameters and control settings.</span></span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/base/system.time.html" class="external-link">system.time</a></span><span class="op">(</span></span>
<span class="r-in"> <span class="va">f_dmta_nlmixr_saem</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlmixr/man/nlmixr.html" class="external-link">nlmixr</a></span><span class="op">(</span><span class="va">f_dmta_mkin_tc</span>, est <span class="op">=</span> <span class="st">"saem"</span>,</span>
<span class="r-in"> control <span class="op">=</span> <span class="fu">nlmixr</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/nlmixr/man/saemControl.html" class="external-link">saemControl</a></span><span class="op">(</span>print <span class="op">=</span> <span class="fl">500</span>, logLik <span class="op">=</span> <span class="cn">TRUE</span>, nmc <span class="op">=</span> <span class="fl">9</span><span class="op">)</span><span class="op">)</span></span>
<span class="r-in"><span class="op">)</span></span>
<span class="r-msg co"><span class="r-pr">#></span> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BBBB;">ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BBBB;">ℹ</span> Need to run with the source intact to parse comments</span>
<span class="r-err co"><span class="r-pr">#></span> <span class="error">Error in eval(substitute(expr), data, enclos = parent.frame()):</span> Cannot run SAEM since some of the parameters are not mu-referenced (eta.f_DMTA_tffm0_1_qlogis, eta.f_DMTA_tffm0_2_qlogis, eta.f_DMTA_tffm0_3_qlogis)</span>
<span class="r-msg co"><span class="r-pr">#></span> Timing stopped at: 0.892 0.004 0.896</span>
<span class="r-msg co"><span class="r-pr">#></span> Timing stopped at: 1.096 0.005 1.1</span>
<span class="r-in"><span class="fu">traceplot</span><span class="op">(</span><span class="va">f_dmta_nlmixr_saem</span><span class="op">$</span><span class="va">nm</span><span class="op">)</span></span>
<span class="r-err co"><span class="r-pr">#></span> <span class="error">Error in traceplot(f_dmta_nlmixr_saem$nm):</span> could not find function "traceplot"</span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">f_dmta_nlmixr_saem</span><span class="op">)</span></span>
<span class="r-err co"><span class="r-pr">#></span> <span class="error">Error in summary(f_dmta_nlmixr_saem):</span> object 'f_dmta_nlmixr_saem' not found</span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_dmta_nlmixr_saem</span><span class="op">)</span></span>
<span class="r-err co"><span class="r-pr">#></span> <span class="error">Error in plot(f_dmta_nlmixr_saem):</span> object 'f_dmta_nlmixr_saem' not found</span>
<span class="r-in"><span class="co"># }</span></span>
</code></pre></div>
</div>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top"><h2 data-toc-skip>Contents</h2>
</nav></div>
</div>
<footer><div class="copyright">
<p></p><p>Developed by Johannes Ranke.</p>
</div>
<div class="pkgdown">
<p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.2.</p>
</div>
</footer></div>
</body></html>
|