aboutsummaryrefslogtreecommitdiff
path: root/docs/dev/reference/saemix.html
blob: 2c4fd2d7fa86903f558b9ff0dbd0e2c0c2159889 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
<!-- Generated by pkgdown: do not edit by hand -->
<!DOCTYPE html>
<html lang="en">
  <head>
  <meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Create saemix models from mmkin row objects — saemix_model • mkin</title>


<!-- jquery -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
<!-- Bootstrap -->

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" />

<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>

<!-- bootstrap-toc -->
<link rel="stylesheet" href="../bootstrap-toc.css">
<script src="../bootstrap-toc.js"></script>

<!-- Font Awesome icons -->
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" />

<!-- clipboard.js -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script>

<!-- headroom.js -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script>

<!-- pkgdown -->
<link href="../pkgdown.css" rel="stylesheet">
<script src="../pkgdown.js"></script>




<meta property="og:title" content="Create saemix models from mmkin row objects — saemix_model" />
<meta property="og:description" content="This function sets up a nonlinear mixed effects model for an mmkin row
object for use with the saemix package. An mmkin row object is essentially a
list of mkinfit objects that have been obtained by fitting the same model to
a list of datasets." />


<meta name="robots" content="noindex">

<!-- mathjax -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>

<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->



  </head>

  <body data-spy="scroll" data-target="#toc">
    <div class="container template-reference-topic">
      <header>
      <div class="navbar navbar-default navbar-fixed-top" role="navigation">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
        <span class="sr-only">Toggle navigation</span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <span class="navbar-brand">
        <a class="navbar-link" href="../index.html">mkin</a>
        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">0.9.50.4</span>
      </span>
    </div>

    <div id="navbar" class="navbar-collapse collapse">
      <ul class="nav navbar-nav">
        <li>
  <a href="../reference/index.html">Functions and data</a>
</li>
<li class="dropdown">
  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
    Articles
     
    <span class="caret"></span>
  </a>
  <ul class="dropdown-menu" role="menu">
    <li>
      <a href="../articles/mkin.html">Introduction to mkin</a>
    </li>
    <li>
      <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
    </li>
    <li>
      <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
    </li>
    <li>
      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
    </li>
    <li>
      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
    </li>
    <li>
      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
    </li>
    <li>
      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
    </li>
    <li>
      <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a>
    </li>
  </ul>
</li>
<li>
  <a href="../news/index.html">News</a>
</li>
      </ul>
      <ul class="nav navbar-nav navbar-right">
        <li>
  <a href="https://github.com/jranke/mkin/">
    <span class="fab fa fab fa-github fa-lg"></span>
     
  </a>
</li>
      </ul>
      
    </div><!--/.nav-collapse -->
  </div><!--/.container -->
</div><!--/.navbar -->

      

      </header>

<div class="row">
  <div class="col-md-9 contents">
    <div class="page-header">
    <h1>Create saemix models from mmkin row objects</h1>
    <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/saemix.R'><code>R/saemix.R</code></a></small>
    <div class="hidden name"><code>saemix.Rd</code></div>
    </div>

    <div class="ref-description">
    <p>This function sets up a nonlinear mixed effects model for an mmkin row
object for use with the saemix package. An mmkin row object is essentially a
list of mkinfit objects that have been obtained by fitting the same model to
a list of datasets.</p>
    </div>

    <pre class="usage"><span class='fu'>saemix_model</span><span class='op'>(</span><span class='va'>object</span>, cores <span class='op'>=</span> <span class='fu'>parallel</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/r/parallel/detectCores.html'>detectCores</a></span><span class='op'>(</span><span class='op'>)</span><span class='op'>)</span>

<span class='fu'>saemix_data</span><span class='op'>(</span><span class='va'>object</span>, <span class='va'>...</span><span class='op'>)</span></pre>

    <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
    <table class="ref-arguments">
    <colgroup><col class="name" /><col class="desc" /></colgroup>
    <tr>
      <th>object</th>
      <td><p>An mmkin row object containing several fits of the same model to different datasets</p></td>
    </tr>
    <tr>
      <th>cores</th>
      <td><p>The number of cores to be used for multicore processing.
On Windows machines, cores &gt; 1 is currently not supported.</p></td>
    </tr>
    <tr>
      <th>...</th>
      <td><p>Further parameters passed to <a href='https://rdrr.io/pkg/saemix/man/saemixData.html'>saemix::saemixData</a></p></td>
    </tr>
    </table>

    <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>

    <p>An <a href='https://rdrr.io/pkg/saemix/man/SaemixModel-class.html'>saemix::SaemixModel</a> object.</p>
<p>An <a href='https://rdrr.io/pkg/saemix/man/SaemixData-class.html'>saemix::SaemixData</a> object.</p>
    <h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>

    <p>Starting values for the fixed effects (population mean parameters, argument psi0 of
<code><a href='https://rdrr.io/pkg/saemix/man/saemixModel.html'>saemix::saemixModel()</a></code> are the mean values of the parameters found using
mmkin. Starting variances of the random effects (argument omega.init) are the
variances of the deviations of the parameters from these mean values.</p>

    <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
    <pre class="examples"><div class='input'><span class='va'>ds</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>experimental_data_for_UBA_2019</span><span class='op'>[</span><span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>]</span>,
 <span class='kw'>function</span><span class='op'>(</span><span class='va'>x</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/subset.html'>subset</a></span><span class='op'>(</span><span class='va'>x</span><span class='op'>$</span><span class='va'>data</span><span class='op'>[</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"name"</span>, <span class='st'>"time"</span>, <span class='st'>"value"</span><span class='op'>)</span><span class='op'>]</span><span class='op'>)</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>ds</span><span class='op'>)</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/paste.html'>paste</a></span><span class='op'>(</span><span class='st'>"Dataset"</span>, <span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>)</span>
<span class='va'>sfo_sfo</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,
  A1 <span class='op'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span>
</div><div class='output co'>#&gt; <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># \dontrun{</span>
<span class='va'>f_mmkin</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>sfo_sfo</span><span class='op'>)</span>, <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='kw'><a href='https://rdrr.io/r/base/library.html'>library</a></span><span class='op'>(</span><span class='va'>saemix</span><span class='op'>)</span>
</div><div class='output co'>#&gt; <span class='message'>Package saemix, version 3.1.9000</span>
#&gt; <span class='message'>  please direct bugs, questions and feedback to emmanuelle.comets@inserm.fr</span></div><div class='input'><span class='va'>m_saemix</span> <span class='op'>&lt;-</span> <span class='fu'>saemix_model</span><span class='op'>(</span><span class='va'>f_mmkin</span>, cores <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span>
</div><div class='output co'>#&gt; 
#&gt; 
#&gt; The following SaemixModel object was successfully created:
#&gt; 
#&gt; Nonlinear mixed-effects model
#&gt;   Model function:  Mixed model generated from mmkin object  Model type:  structural
#&gt; function (psi, id, xidep) 
#&gt; {
#&gt;     uid &lt;- unique(id)
#&gt;     res_list &lt;- parallel::mclapply(uid, function(i) {
#&gt;         transparms_optim &lt;- psi[i, ]
#&gt;         names(transparms_optim) &lt;- names(degparms_optim)
#&gt;         odeini_optim &lt;- transparms_optim[odeini_optim_parm_names]
#&gt;         names(odeini_optim) &lt;- gsub("_0$", "", odeini_optim_parm_names)
#&gt;         odeini &lt;- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)]
#&gt;         ode_transparms_optim_names &lt;- setdiff(names(transparms_optim), 
#&gt;             odeini_optim_parm_names)
#&gt;         odeparms_optim &lt;- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], 
#&gt;             mkin_model, transform_rates = object[[1]]$transform_rates, 
#&gt;             transform_fractions = object[[1]]$transform_fractions)
#&gt;         odeparms &lt;- c(odeparms_optim, odeparms_fixed)
#&gt;         xidep_i &lt;- subset(xidep, id == i)
#&gt;         if (analytical) {
#&gt;             out_values &lt;- mkin_model$deg_func(xidep_i, odeini, 
#&gt;                 odeparms)
#&gt;         }
#&gt;         else {
#&gt;             i_time &lt;- xidep_i$time
#&gt;             i_name &lt;- xidep_i$name
#&gt;             out_wide &lt;- mkinpredict(mkin_model, odeparms = odeparms, 
#&gt;                 odeini = odeini, solution_type = object[[1]]$solution_type, 
#&gt;                 outtimes = sort(unique(i_time)))
#&gt;             out_index &lt;- cbind(as.character(i_time), as.character(i_name))
#&gt;             out_values &lt;- out_wide[out_index]
#&gt;         }
#&gt;         return(out_values)
#&gt;     }, mc.cores = cores)
#&gt;     res &lt;- unlist(res_list)
#&gt;     return(res)
#&gt; }
#&gt; &lt;bytecode: 0x555555c89340&gt;
#&gt; &lt;environment: 0x555555c82680&gt;
#&gt;   Nb of parameters: 4 
#&gt;       parameter names:  parent_0 log_k_parent log_k_A1 f_parent_ilr_1 
#&gt;       distribution:
#&gt;      Parameter      Distribution Estimated
#&gt; [1,] parent_0       normal       Estimated
#&gt; [2,] log_k_parent   normal       Estimated
#&gt; [3,] log_k_A1       normal       Estimated
#&gt; [4,] f_parent_ilr_1 normal       Estimated
#&gt;   Variance-covariance matrix:
#&gt;                parent_0 log_k_parent log_k_A1 f_parent_ilr_1
#&gt; parent_0              1            0        0              0
#&gt; log_k_parent          0            1        0              0
#&gt; log_k_A1              0            0        1              0
#&gt; f_parent_ilr_1        0            0        0              1
#&gt;   Error model: constant , initial values: a.1=4.97259024646577 
#&gt;     No covariate in the model.
#&gt;     Initial values
#&gt;              parent_0 log_k_parent  log_k_A1 f_parent_ilr_1
#&gt; Pop.CondInit 86.53449    -3.207005 -3.060308      -1.920449</div><div class='input'><span class='va'>d_saemix</span> <span class='op'>&lt;-</span> <span class='fu'>saemix_data</span><span class='op'>(</span><span class='va'>f_mmkin</span><span class='op'>)</span>
</div><div class='output co'>#&gt; 
#&gt; 
#&gt; The following SaemixData object was successfully created:
#&gt; 
#&gt; Object of class SaemixData
#&gt;     longitudinal data for use with the SAEM algorithm
#&gt; Dataset ds_saemix 
#&gt;     Structured data: value ~ time + name | ds 
#&gt;     X variable for graphs: time () </div><div class='input'><span class='va'>saemix_options</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>seed <span class='op'>=</span> <span class='fl'>123456</span>,
  save <span class='op'>=</span> <span class='cn'>FALSE</span>, save.graphs <span class='op'>=</span> <span class='cn'>FALSE</span>, displayProgress <span class='op'>=</span> <span class='cn'>FALSE</span>,
  nbiter.saemix <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>200</span>, <span class='fl'>80</span><span class='op'>)</span><span class='op'>)</span>
<span class='va'>f_saemix</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/saemix.html'>saemix</a></span><span class='op'>(</span><span class='va'>m_saemix</span>, <span class='va'>d_saemix</span>, <span class='va'>saemix_options</span><span class='op'>)</span>
</div><div class='output co'>#&gt; Running main SAEM algorithm
#&gt; [1] "Thu Oct 15 14:51:26 2020"
#&gt; ..
#&gt;     Minimisation finished
#&gt; [1] "Thu Oct 15 14:53:18 2020"</div><div class='img'><img src='saemix-1.png' alt='' width='700' height='433' /></div><div class='output co'>#&gt; Nonlinear mixed-effects model fit by the SAEM algorithm
#&gt; -----------------------------------
#&gt; ----          Data             ----
#&gt; -----------------------------------
#&gt; Object of class SaemixData
#&gt;     longitudinal data for use with the SAEM algorithm
#&gt; Dataset ds_saemix 
#&gt;     Structured data: value ~ time + name | ds 
#&gt;     X variable for graphs: time () 
#&gt; Dataset characteristics:
#&gt;     number of subjects:     5 
#&gt;     number of observations: 170 
#&gt;     average/min/max nb obs: 34.00  /  30  /  38 
#&gt; First 10 lines of data:
#&gt;           ds time   name value mdv cens occ ytype
#&gt; 1  Dataset 6    0 parent  97.2   0    0   1     1
#&gt; 2  Dataset 6    0 parent  96.4   0    0   1     1
#&gt; 3  Dataset 6    3 parent  71.1   0    0   1     1
#&gt; 4  Dataset 6    3 parent  69.2   0    0   1     1
#&gt; 5  Dataset 6    6 parent  58.1   0    0   1     1
#&gt; 6  Dataset 6    6 parent  56.6   0    0   1     1
#&gt; 7  Dataset 6   10 parent  44.4   0    0   1     1
#&gt; 8  Dataset 6   10 parent  43.4   0    0   1     1
#&gt; 9  Dataset 6   20 parent  33.3   0    0   1     1
#&gt; 10 Dataset 6   20 parent  29.2   0    0   1     1
#&gt; -----------------------------------
#&gt; ----          Model            ----
#&gt; -----------------------------------
#&gt; Nonlinear mixed-effects model
#&gt;   Model function:  Mixed model generated from mmkin object  Model type:  structural
#&gt; function (psi, id, xidep) 
#&gt; {
#&gt;     uid &lt;- unique(id)
#&gt;     res_list &lt;- parallel::mclapply(uid, function(i) {
#&gt;         transparms_optim &lt;- psi[i, ]
#&gt;         names(transparms_optim) &lt;- names(degparms_optim)
#&gt;         odeini_optim &lt;- transparms_optim[odeini_optim_parm_names]
#&gt;         names(odeini_optim) &lt;- gsub("_0$", "", odeini_optim_parm_names)
#&gt;         odeini &lt;- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)]
#&gt;         ode_transparms_optim_names &lt;- setdiff(names(transparms_optim), 
#&gt;             odeini_optim_parm_names)
#&gt;         odeparms_optim &lt;- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], 
#&gt;             mkin_model, transform_rates = object[[1]]$transform_rates, 
#&gt;             transform_fractions = object[[1]]$transform_fractions)
#&gt;         odeparms &lt;- c(odeparms_optim, odeparms_fixed)
#&gt;         xidep_i &lt;- subset(xidep, id == i)
#&gt;         if (analytical) {
#&gt;             out_values &lt;- mkin_model$deg_func(xidep_i, odeini, 
#&gt;                 odeparms)
#&gt;         }
#&gt;         else {
#&gt;             i_time &lt;- xidep_i$time
#&gt;             i_name &lt;- xidep_i$name
#&gt;             out_wide &lt;- mkinpredict(mkin_model, odeparms = odeparms, 
#&gt;                 odeini = odeini, solution_type = object[[1]]$solution_type, 
#&gt;                 outtimes = sort(unique(i_time)))
#&gt;             out_index &lt;- cbind(as.character(i_time), as.character(i_name))
#&gt;             out_values &lt;- out_wide[out_index]
#&gt;         }
#&gt;         return(out_values)
#&gt;     }, mc.cores = cores)
#&gt;     res &lt;- unlist(res_list)
#&gt;     return(res)
#&gt; }
#&gt; &lt;bytecode: 0x555555c89340&gt;
#&gt; &lt;environment: 0x555555c82680&gt;
#&gt;   Nb of parameters: 4 
#&gt;       parameter names:  parent_0 log_k_parent log_k_A1 f_parent_ilr_1 
#&gt;       distribution:
#&gt;      Parameter      Distribution Estimated
#&gt; [1,] parent_0       normal       Estimated
#&gt; [2,] log_k_parent   normal       Estimated
#&gt; [3,] log_k_A1       normal       Estimated
#&gt; [4,] f_parent_ilr_1 normal       Estimated
#&gt;   Variance-covariance matrix:
#&gt;                parent_0 log_k_parent log_k_A1 f_parent_ilr_1
#&gt; parent_0              1            0        0              0
#&gt; log_k_parent          0            1        0              0
#&gt; log_k_A1              0            0        1              0
#&gt; f_parent_ilr_1        0            0        0              1
#&gt;   Error model: constant , initial values: a.1=4.97259024646577 
#&gt;     No covariate in the model.
#&gt;     Initial values
#&gt;              parent_0 log_k_parent  log_k_A1 f_parent_ilr_1
#&gt; Pop.CondInit 86.53449    -3.207005 -3.060308      -1.920449
#&gt; -----------------------------------
#&gt; ----    Key algorithm options  ----
#&gt; -----------------------------------
#&gt;     Estimation of individual parameters (MAP)
#&gt;     Estimation of standard errors and linearised log-likelihood
#&gt;     Estimation of log-likelihood by importance sampling
#&gt;     Number of iterations:  K1=200, K2=80 
#&gt;     Number of chains:  10 
#&gt;     Seed:  123456 
#&gt;     Number of MCMC iterations for IS:  5000 
#&gt;     Simulations:
#&gt;         nb of simulated datasets used for npde:  1000 
#&gt;         nb of simulated datasets used for VPC:  100 
#&gt;     Input/output
#&gt;         save the results to a file:  FALSE 
#&gt;         save the graphs to files:  FALSE 
#&gt; ----------------------------------------------------
#&gt; ----                  Results                   ----
#&gt; ----------------------------------------------------
#&gt; -----------------  Fixed effects  ------------------
#&gt; ----------------------------------------------------
#&gt;   Parameter      Estimate SE   CV(%)
#&gt;   parent_0       86.09    1.57  1.8 
#&gt;   log_k_parent   -3.21    0.59 18.5 
#&gt;   log_k_A1       -4.69    0.31  6.6 
#&gt;   f_parent_ilr_1 -0.34    0.30 89.2 
#&gt; a a.1             4.69    0.27  5.8 
#&gt; ----------------------------------------------------
#&gt; -----------  Variance of random effects  -----------
#&gt; ----------------------------------------------------
#&gt;                Parameter             Estimate SE   CV(%)
#&gt; parent_0       omega2.parent_0       7.07     7.72 109  
#&gt; log_k_parent   omega2.log_k_parent   1.75     1.11  63  
#&gt; log_k_A1       omega2.log_k_A1       0.28     0.28  99  
#&gt; f_parent_ilr_1 omega2.f_parent_ilr_1 0.39     0.27  71  
#&gt; ----------------------------------------------------
#&gt; ------  Correlation matrix of random effects  ------
#&gt; ----------------------------------------------------
#&gt;                       omega2.parent_0 omega2.log_k_parent omega2.log_k_A1
#&gt; omega2.parent_0       1               0                   0              
#&gt; omega2.log_k_parent   0               1                   0              
#&gt; omega2.log_k_A1       0               0                   1              
#&gt; omega2.f_parent_ilr_1 0               0                   0              
#&gt;                       omega2.f_parent_ilr_1
#&gt; omega2.parent_0       0                    
#&gt; omega2.log_k_parent   0                    
#&gt; omega2.log_k_A1       0                    
#&gt; omega2.f_parent_ilr_1 1                    
#&gt; ----------------------------------------------------
#&gt; ---------------  Statistical criteria  -------------
#&gt; ----------------------------------------------------
#&gt; Likelihood computed by linearisation
#&gt;       -2LL= 1064.35 
#&gt;       AIC = 1082.35 
#&gt;       BIC = 1078.835 
#&gt; 
#&gt; Likelihood computed by importance sampling
#&gt;       -2LL= 1063.475 
#&gt;       AIC = 1081.475 
#&gt;       BIC = 1077.96 
#&gt; ----------------------------------------------------</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saemix</span>, plot.type <span class='op'>=</span> <span class='st'>"convergence"</span><span class='op'>)</span>
</div><div class='output co'>#&gt; Plotting convergence plots</div><div class='img'><img src='saemix-2.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># }</span>
<span class='co'># Synthetic data with two-component error</span>
<span class='va'>sampling_times</span> <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>0</span>, <span class='fl'>1</span>, <span class='fl'>3</span>, <span class='fl'>7</span>, <span class='fl'>14</span>, <span class='fl'>28</span>, <span class='fl'>60</span>, <span class='fl'>90</span>, <span class='fl'>120</span><span class='op'>)</span>
<span class='va'>dt50_sfo_in</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fl'>80</span>, <span class='fl'>90</span>, <span class='fl'>100</span>, <span class='fl'>111.111</span>, <span class='fl'>125</span><span class='op'>)</span>
<span class='va'>k_in</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/Log.html'>log</a></span><span class='op'>(</span><span class='fl'>2</span><span class='op'>)</span> <span class='op'>/</span> <span class='va'>dt50_sfo_in</span>

<span class='va'>SFO</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span><span class='op'>)</span>

<span class='va'>pred_sfo</span> <span class='op'>&lt;-</span> <span class='kw'>function</span><span class='op'>(</span><span class='va'>k</span><span class='op'>)</span> <span class='op'>{</span>
  <span class='fu'><a href='mkinpredict.html'>mkinpredict</a></span><span class='op'>(</span><span class='va'>SFO</span>, <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>k_parent <span class='op'>=</span> <span class='va'>k</span><span class='op'>)</span>,
    <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fl'>100</span><span class='op'>)</span>, <span class='va'>sampling_times</span><span class='op'>)</span>
<span class='op'>}</span>

<span class='va'>ds_sfo_mean</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>k_in</span>, <span class='va'>pred_sfo</span><span class='op'>)</span>
<span class='fu'><a href='https://rdrr.io/r/base/Random.html'>set.seed</a></span><span class='op'>(</span><span class='fl'>123456L</span><span class='op'>)</span>
<span class='va'>ds_sfo_syn</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>ds_sfo_mean</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>ds</span><span class='op'>)</span> <span class='op'>{</span>
  <span class='fu'><a href='add_err.html'>add_err</a></span><span class='op'>(</span><span class='va'>ds</span>, sdfunc <span class='op'>=</span> <span class='kw'>function</span><span class='op'>(</span><span class='va'>value</span><span class='op'>)</span> <span class='fu'><a href='https://rdrr.io/r/base/MathFun.html'>sqrt</a></span><span class='op'>(</span><span class='fl'>1</span><span class='op'>^</span><span class='fl'>2</span> <span class='op'>+</span> <span class='va'>value</span><span class='op'>^</span><span class='fl'>2</span> <span class='op'>*</span> <span class='fl'>0.07</span><span class='op'>^</span><span class='fl'>2</span><span class='op'>)</span>,
     n <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span><span class='op'>[[</span><span class='fl'>1</span><span class='op'>]</span><span class='op'>]</span>
 <span class='op'>}</span><span class='op'>)</span>
<span class='co'># \dontrun{</span>
<span class='va'>f_mmkin_syn</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='va'>ds_sfo_syn</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
<span class='co'># plot(f_mmkin_syn)</span>
<span class='va'>m_saemix_tc</span> <span class='op'>&lt;-</span> <span class='fu'>saemix_model</span><span class='op'>(</span><span class='va'>f_mmkin_syn</span>, cores <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span>
</div><div class='output co'>#&gt; 
#&gt; 
#&gt; The following SaemixModel object was successfully created:
#&gt; 
#&gt; Nonlinear mixed-effects model
#&gt;   Model function:  Mixed model generated from mmkin object  Model type:  structural
#&gt; function (psi, id, xidep) 
#&gt; {
#&gt;     uid &lt;- unique(id)
#&gt;     res_list &lt;- parallel::mclapply(uid, function(i) {
#&gt;         transparms_optim &lt;- psi[i, ]
#&gt;         names(transparms_optim) &lt;- names(degparms_optim)
#&gt;         odeini_optim &lt;- transparms_optim[odeini_optim_parm_names]
#&gt;         names(odeini_optim) &lt;- gsub("_0$", "", odeini_optim_parm_names)
#&gt;         odeini &lt;- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)]
#&gt;         ode_transparms_optim_names &lt;- setdiff(names(transparms_optim), 
#&gt;             odeini_optim_parm_names)
#&gt;         odeparms_optim &lt;- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], 
#&gt;             mkin_model, transform_rates = object[[1]]$transform_rates, 
#&gt;             transform_fractions = object[[1]]$transform_fractions)
#&gt;         odeparms &lt;- c(odeparms_optim, odeparms_fixed)
#&gt;         xidep_i &lt;- subset(xidep, id == i)
#&gt;         if (analytical) {
#&gt;             out_values &lt;- mkin_model$deg_func(xidep_i, odeini, 
#&gt;                 odeparms)
#&gt;         }
#&gt;         else {
#&gt;             i_time &lt;- xidep_i$time
#&gt;             i_name &lt;- xidep_i$name
#&gt;             out_wide &lt;- mkinpredict(mkin_model, odeparms = odeparms, 
#&gt;                 odeini = odeini, solution_type = object[[1]]$solution_type, 
#&gt;                 outtimes = sort(unique(i_time)))
#&gt;             out_index &lt;- cbind(as.character(i_time), as.character(i_name))
#&gt;             out_values &lt;- out_wide[out_index]
#&gt;         }
#&gt;         return(out_values)
#&gt;     }, mc.cores = cores)
#&gt;     res &lt;- unlist(res_list)
#&gt;     return(res)
#&gt; }
#&gt; &lt;bytecode: 0x555555c89340&gt;
#&gt; &lt;environment: 0x55555df58cf8&gt;
#&gt;   Nb of parameters: 2 
#&gt;       parameter names:  parent_0 log_k_parent 
#&gt;       distribution:
#&gt;      Parameter    Distribution Estimated
#&gt; [1,] parent_0     normal       Estimated
#&gt; [2,] log_k_parent normal       Estimated
#&gt;   Variance-covariance matrix:
#&gt;              parent_0 log_k_parent
#&gt; parent_0            1            0
#&gt; log_k_parent        0            1
#&gt;   Error model: combined , initial values: a.1=1.05209877924905 b.1=0.0586479225303944 
#&gt;     No covariate in the model.
#&gt;     Initial values
#&gt;              parent_0 log_k_parent
#&gt; Pop.CondInit  100.315    -4.962075</div><div class='input'><span class='va'>d_saemix_tc</span> <span class='op'>&lt;-</span> <span class='fu'>saemix_data</span><span class='op'>(</span><span class='va'>f_mmkin_syn</span><span class='op'>)</span>
</div><div class='output co'>#&gt; 
#&gt; 
#&gt; The following SaemixData object was successfully created:
#&gt; 
#&gt; Object of class SaemixData
#&gt;     longitudinal data for use with the SAEM algorithm
#&gt; Dataset ds_saemix 
#&gt;     Structured data: value ~ time + name | ds 
#&gt;     X variable for graphs: time () </div><div class='input'><span class='va'>f_saemix_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/saemix/man/saemix.html'>saemix</a></span><span class='op'>(</span><span class='va'>m_saemix_tc</span>, <span class='va'>d_saemix_tc</span>, <span class='va'>saemix_options</span><span class='op'>)</span>
</div><div class='output co'>#&gt; Running main SAEM algorithm
#&gt; [1] "Thu Oct 15 14:53:35 2020"
#&gt; ..
#&gt;     Minimisation finished
#&gt; [1] "Thu Oct 15 14:54:25 2020"</div><div class='output co'>#&gt; Nonlinear mixed-effects model fit by the SAEM algorithm
#&gt; -----------------------------------
#&gt; ----          Data             ----
#&gt; -----------------------------------
#&gt; Object of class SaemixData
#&gt;     longitudinal data for use with the SAEM algorithm
#&gt; Dataset ds_saemix 
#&gt;     Structured data: value ~ time + name | ds 
#&gt;     X variable for graphs: time () 
#&gt; Dataset characteristics:
#&gt;     number of subjects:     5 
#&gt;     number of observations: 90 
#&gt;     average/min/max nb obs: 18.00  /  18  /  18 
#&gt; First 10 lines of data:
#&gt;    ds time   name value mdv cens occ ytype
#&gt; 1   1    0 parent 105.9   0    0   1     1
#&gt; 2   1    0 parent  98.0   0    0   1     1
#&gt; 3   1    1 parent  96.6   0    0   1     1
#&gt; 4   1    1 parent  99.8   0    0   1     1
#&gt; 5   1    3 parent 113.0   0    0   1     1
#&gt; 6   1    3 parent 103.2   0    0   1     1
#&gt; 7   1    7 parent 102.9   0    0   1     1
#&gt; 8   1    7 parent 110.8   0    0   1     1
#&gt; 9   1   14 parent  95.9   0    0   1     1
#&gt; 10  1   14 parent  85.9   0    0   1     1
#&gt; -----------------------------------
#&gt; ----          Model            ----
#&gt; -----------------------------------
#&gt; Nonlinear mixed-effects model
#&gt;   Model function:  Mixed model generated from mmkin object  Model type:  structural
#&gt; function (psi, id, xidep) 
#&gt; {
#&gt;     uid &lt;- unique(id)
#&gt;     res_list &lt;- parallel::mclapply(uid, function(i) {
#&gt;         transparms_optim &lt;- psi[i, ]
#&gt;         names(transparms_optim) &lt;- names(degparms_optim)
#&gt;         odeini_optim &lt;- transparms_optim[odeini_optim_parm_names]
#&gt;         names(odeini_optim) &lt;- gsub("_0$", "", odeini_optim_parm_names)
#&gt;         odeini &lt;- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)]
#&gt;         ode_transparms_optim_names &lt;- setdiff(names(transparms_optim), 
#&gt;             odeini_optim_parm_names)
#&gt;         odeparms_optim &lt;- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], 
#&gt;             mkin_model, transform_rates = object[[1]]$transform_rates, 
#&gt;             transform_fractions = object[[1]]$transform_fractions)
#&gt;         odeparms &lt;- c(odeparms_optim, odeparms_fixed)
#&gt;         xidep_i &lt;- subset(xidep, id == i)
#&gt;         if (analytical) {
#&gt;             out_values &lt;- mkin_model$deg_func(xidep_i, odeini, 
#&gt;                 odeparms)
#&gt;         }
#&gt;         else {
#&gt;             i_time &lt;- xidep_i$time
#&gt;             i_name &lt;- xidep_i$name
#&gt;             out_wide &lt;- mkinpredict(mkin_model, odeparms = odeparms, 
#&gt;                 odeini = odeini, solution_type = object[[1]]$solution_type, 
#&gt;                 outtimes = sort(unique(i_time)))
#&gt;             out_index &lt;- cbind(as.character(i_time), as.character(i_name))
#&gt;             out_values &lt;- out_wide[out_index]
#&gt;         }
#&gt;         return(out_values)
#&gt;     }, mc.cores = cores)
#&gt;     res &lt;- unlist(res_list)
#&gt;     return(res)
#&gt; }
#&gt; &lt;bytecode: 0x555555c89340&gt;
#&gt; &lt;environment: 0x55555df58cf8&gt;
#&gt;   Nb of parameters: 2 
#&gt;       parameter names:  parent_0 log_k_parent 
#&gt;       distribution:
#&gt;      Parameter    Distribution Estimated
#&gt; [1,] parent_0     normal       Estimated
#&gt; [2,] log_k_parent normal       Estimated
#&gt;   Variance-covariance matrix:
#&gt;              parent_0 log_k_parent
#&gt; parent_0            1            0
#&gt; log_k_parent        0            1
#&gt;   Error model: combined , initial values: a.1=1.05209877924905 b.1=0.0586479225303944 
#&gt;     No covariate in the model.
#&gt;     Initial values
#&gt;              parent_0 log_k_parent
#&gt; Pop.CondInit  100.315    -4.962075
#&gt; -----------------------------------
#&gt; ----    Key algorithm options  ----
#&gt; -----------------------------------
#&gt;     Estimation of individual parameters (MAP)
#&gt;     Estimation of standard errors and linearised log-likelihood
#&gt;     Estimation of log-likelihood by importance sampling
#&gt;     Number of iterations:  K1=200, K2=80 
#&gt;     Number of chains:  10 
#&gt;     Seed:  123456 
#&gt;     Number of MCMC iterations for IS:  5000 
#&gt;     Simulations:
#&gt;         nb of simulated datasets used for npde:  1000 
#&gt;         nb of simulated datasets used for VPC:  100 
#&gt;     Input/output
#&gt;         save the results to a file:  FALSE 
#&gt;         save the graphs to files:  FALSE 
#&gt; ----------------------------------------------------
#&gt; ----                  Results                   ----
#&gt; ----------------------------------------------------
#&gt; -----------------  Fixed effects  ------------------
#&gt; ----------------------------------------------------
#&gt;   Parameter    Estimate SE    CV(%) 
#&gt;   parent_0     100.232  1.266    1.3
#&gt;   log_k_parent  -4.961  0.089    1.8
#&gt; a a.1           -0.106  1.211 1142.0
#&gt; b b.1            0.071  0.017   24.2
#&gt; ----------------------------------------------------
#&gt; -----------  Variance of random effects  -----------
#&gt; ----------------------------------------------------
#&gt;              Parameter           Estimate SE    CV(%)
#&gt; parent_0     omega2.parent_0     3.334    5.024 151  
#&gt; log_k_parent omega2.log_k_parent 0.036    0.024  68  
#&gt; ----------------------------------------------------
#&gt; ------  Correlation matrix of random effects  ------
#&gt; ----------------------------------------------------
#&gt;                     omega2.parent_0 omega2.log_k_parent
#&gt; omega2.parent_0     1               0                  
#&gt; omega2.log_k_parent 0               1                  
#&gt; ----------------------------------------------------
#&gt; ---------------  Statistical criteria  -------------
#&gt; ----------------------------------------------------
#&gt; Likelihood computed by linearisation
#&gt;       -2LL= 575.5586 
#&gt;       AIC = 587.5586 
#&gt;       BIC = 585.2153 
#&gt; 
#&gt; Likelihood computed by importance sampling
#&gt;       -2LL= 575.7797 
#&gt;       AIC = 587.7797 
#&gt;       BIC = 585.4364 
#&gt; ----------------------------------------------------</div><div class='input'><span class='fu'><a href='https://rdrr.io/pkg/saemix/man/plot-SaemixObject-method.html'>plot</a></span><span class='op'>(</span><span class='va'>f_saemix_tc</span>, plot.type <span class='op'>=</span> <span class='st'>"convergence"</span><span class='op'>)</span>
</div><div class='img'><img src='saemix-3.png' alt='' width='700' height='433' /></div><div class='output co'>#&gt; Plotting convergence plots</div><div class='img'><img src='saemix-4.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># }</span>
</div></pre>
  </div>
  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
    <nav id="toc" data-toggle="toc" class="sticky-top">
      <h2 data-toc-skip>Contents</h2>
    </nav>
  </div>
</div>


      <footer>
      <div class="copyright">
  <p>Developed by Johannes Ranke.</p>
</div>

<div class="pkgdown">
  <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
</div>

      </footer>
   </div>

  


  </body>
</html>


Contact - Imprint