1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
|
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Aerobic soil degradation data on dimethenamid and dimethenamid-P from the EU assessment in 2018 — dimethenamid_2018 • mkin</title><!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"><script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css"><script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"><script src="../pkgdown.js"></script><meta property="og:title" content="Aerobic soil degradation data on dimethenamid and dimethenamid-P from the EU assessment in 2018 — dimethenamid_2018"><meta property="og:description" content="The datasets were extracted from the active substance evaluation dossier
published by EFSA. Kinetic evaluations shown for these datasets are intended
to illustrate and advance kinetic modelling. The fact that these data and
some results are shown here does not imply a license to use them in the
context of pesticide registrations, as the use of the data may be
constrained by data protection regulations."><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]--></head><body data-spy="scroll" data-target="#toc">
<div class="container template-reference-topic">
<header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.1.0</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav"><li>
<a href="../reference/index.html">Functions and data</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Articles
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu"><li>
<a href="../articles/mkin.html">Introduction to mkin</a>
</li>
<li>
<a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
</li>
<li>
<a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
</li>
<li>
<a href="../articles/web_only/dimethenamid_2018.html">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models</a>
</li>
<li>
<a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
</li>
<li>
<a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
</li>
<li>
<a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
</li>
<li>
<a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
</li>
<li>
<a href="../articles/web_only/benchmarks.html">Some benchmark timings</a>
</li>
</ul></li>
<li>
<a href="../news/index.html">News</a>
</li>
</ul><ul class="nav navbar-nav navbar-right"><li>
<a href="https://github.com/jranke/mkin/" class="external-link">
<span class="fab fa-github fa-lg"></span>
</a>
</li>
</ul></div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
</header><div class="row">
<div class="col-md-9 contents">
<div class="page-header">
<h1>Aerobic soil degradation data on dimethenamid and dimethenamid-P from the EU assessment in 2018</h1>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/R/dimethenamid_2018.R" class="external-link"><code>R/dimethenamid_2018.R</code></a></small>
<div class="hidden name"><code>dimethenamid_2018.Rd</code></div>
</div>
<div class="ref-description">
<p>The datasets were extracted from the active substance evaluation dossier
published by EFSA. Kinetic evaluations shown for these datasets are intended
to illustrate and advance kinetic modelling. The fact that these data and
some results are shown here does not imply a license to use them in the
context of pesticide registrations, as the use of the data may be
constrained by data protection regulations.</p>
</div>
<div id="ref-usage">
<div class="sourceCode"><pre class="sourceCode r"><code><span class="va">dimethenamid_2018</span></code></pre></div>
</div>
<div id="format">
<h2>Format</h2>
<p>An <a href="mkindsg.html">mkindsg</a> object grouping seven datasets with some meta information</p>
</div>
<div id="source">
<h2>Source</h2>
<p>Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria (2018)
Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour
Rev. 2 - November 2017
<a href="https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716" class="external-link">https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716</a></p>
</div>
<div id="details">
<h2>Details</h2>
<p>The R code used to create this data object is installed with this package
in the 'dataset_generation' directory. In the code, page numbers are given for
specific pieces of information in the comments.</p>
</div>
<div id="ref-examples">
<h2>Examples</h2>
<div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">dimethenamid_2018</span><span class="op">)</span></span>
<span class="r-out co"><span class="r-pr">#></span> <mkindsg> holding 7 mkinds objects</span>
<span class="r-out co"><span class="r-pr">#></span> Title $title: Aerobic soil degradation data on dimethenamid-P from the EU assessment in 2018 </span>
<span class="r-out co"><span class="r-pr">#></span> Occurrence of observed compounds $observed_n:</span>
<span class="r-out co"><span class="r-pr">#></span> DMTAP M23 M27 M31 DMTA </span>
<span class="r-out co"><span class="r-pr">#></span> 3 7 7 7 4 </span>
<span class="r-out co"><span class="r-pr">#></span> Time normalisation factors $f_time_norm:</span>
<span class="r-out co"><span class="r-pr">#></span> [1] 1.0000000 0.9706477 1.2284784 1.2284784 0.6233856 0.7678922 0.6733938</span>
<span class="r-out co"><span class="r-pr">#></span> Meta information $meta:</span>
<span class="r-out co"><span class="r-pr">#></span> study usda_soil_type study_moisture_ref_type rel_moisture</span>
<span class="r-out co"><span class="r-pr">#></span> Calke Unsworth 2014 Sandy loam pF2 1.00</span>
<span class="r-out co"><span class="r-pr">#></span> Borstel Staudenmaier 2009 Sand pF1 0.50</span>
<span class="r-out co"><span class="r-pr">#></span> Elliot 1 Wendt 1997 Clay loam pF2.5 0.75</span>
<span class="r-out co"><span class="r-pr">#></span> Elliot 2 Wendt 1997 Clay loam pF2.5 0.75</span>
<span class="r-out co"><span class="r-pr">#></span> Flaach König 1996 Sandy clay loam pF1 0.40</span>
<span class="r-out co"><span class="r-pr">#></span> BBA 2.2 König 1995 Loamy sand pF1 0.40</span>
<span class="r-out co"><span class="r-pr">#></span> BBA 2.3 König 1995 Sandy loam pF1 0.40</span>
<span class="r-out co"><span class="r-pr">#></span> study_ref_moisture temperature</span>
<span class="r-out co"><span class="r-pr">#></span> Calke NA 20</span>
<span class="r-out co"><span class="r-pr">#></span> Borstel 23.00 20</span>
<span class="r-out co"><span class="r-pr">#></span> Elliot 1 33.37 23</span>
<span class="r-out co"><span class="r-pr">#></span> Elliot 2 33.37 23</span>
<span class="r-out co"><span class="r-pr">#></span> Flaach NA 20</span>
<span class="r-out co"><span class="r-pr">#></span> BBA 2.2 NA 20</span>
<span class="r-out co"><span class="r-pr">#></span> BBA 2.3 NA 20</span>
<span class="r-in"><span class="va">dmta_ds</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="fl">1</span><span class="op">:</span><span class="fl">7</span>, <span class="kw">function</span><span class="op">(</span><span class="va">i</span><span class="op">)</span> <span class="op">{</span></span>
<span class="r-in"> <span class="va">ds_i</span> <span class="op"><-</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span><span class="op">[[</span><span class="va">i</span><span class="op">]</span><span class="op">]</span><span class="op">$</span><span class="va">data</span></span>
<span class="r-in"> <span class="va">ds_i</span><span class="op">[</span><span class="va">ds_i</span><span class="op">$</span><span class="va">name</span> <span class="op">==</span> <span class="st">"DMTAP"</span>, <span class="st">"name"</span><span class="op">]</span> <span class="op"><-</span> <span class="st">"DMTA"</span></span>
<span class="r-in"> <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op"><-</span> <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op">*</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">f_time_norm</span><span class="op">[</span><span class="va">i</span><span class="op">]</span></span>
<span class="r-in"> <span class="va">ds_i</span></span>
<span class="r-in"><span class="op">}</span><span class="op">)</span></span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">sapply</a></span><span class="op">(</span><span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span>, <span class="kw">function</span><span class="op">(</span><span class="va">ds</span><span class="op">)</span> <span class="va">ds</span><span class="op">$</span><span class="va">title</span><span class="op">)</span></span>
<span class="r-in"><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/cbind.html" class="external-link">rbind</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span>, <span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span>
<span class="r-in"><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span>
<span class="r-in"><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span>
<span class="r-in"><span class="co"># \dontrun{</span></span>
<span class="r-in"><span class="va">dfop_sfo3_plus</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span></span>
<span class="r-in"> DMTA <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M23"</span>, <span class="st">"M27"</span>, <span class="st">"M31"</span><span class="op">)</span><span class="op">)</span>,</span>
<span class="r-in"> M23 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span>
<span class="r-in"> M27 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span>
<span class="r-in"> M31 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"M27"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span>
<span class="r-in"> quiet <span class="op">=</span> <span class="cn">TRUE</span></span>
<span class="r-in"><span class="op">)</span></span>
<span class="r-in"><span class="va">f_dmta_mkin_tc</span> <span class="op"><-</span> <span class="fu"><a href="mmkin.html">mmkin</a></span><span class="op">(</span></span>
<span class="r-in"> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="st">"DFOP-SFO3+"</span> <span class="op">=</span> <span class="va">dfop_sfo3_plus</span><span class="op">)</span>,</span>
<span class="r-in"> <span class="va">dmta_ds</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span>
<span class="r-in"><span class="fu"><a href="nlmixr.mmkin.html">nlmixr_model</a></span><span class="op">(</span><span class="va">f_dmta_mkin_tc</span><span class="op">)</span></span>
<span class="r-msg co"><span class="r-pr">#></span> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span>
<span class="r-out co"><span class="r-pr">#></span> function () </span>
<span class="r-out co"><span class="r-pr">#></span> {</span>
<span class="r-out co"><span class="r-pr">#></span> ini({</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 = 99</span>
<span class="r-out co"><span class="r-pr">#></span> eta.DMTA_0 ~ 2.3</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M23 = -3.9</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M23 ~ 0.55</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M27 = -4.3</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M27 ~ 0.86</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M31 = -4.2</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M31 ~ 0.75</span>
<span class="r-out co"><span class="r-pr">#></span> log_k1 = -2.2</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k1 ~ 0.9</span>
<span class="r-out co"><span class="r-pr">#></span> log_k2 = -3.8</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k2 ~ 1.6</span>
<span class="r-out co"><span class="r-pr">#></span> g_qlogis = 0.44</span>
<span class="r-out co"><span class="r-pr">#></span> eta.g_qlogis ~ 3.1</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_1_qlogis = -2.1</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_1_qlogis ~ 0.3</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_2_qlogis = -2.2</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_2_qlogis ~ 0.3</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_3_qlogis = -2.1</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_3_qlogis ~ 0.3</span>
<span class="r-out co"><span class="r-pr">#></span> sigma_low_DMTA = 0.7</span>
<span class="r-out co"><span class="r-pr">#></span> rsd_high_DMTA = 0.026</span>
<span class="r-out co"><span class="r-pr">#></span> sigma_low_M23 = 0.7</span>
<span class="r-out co"><span class="r-pr">#></span> rsd_high_M23 = 0.026</span>
<span class="r-out co"><span class="r-pr">#></span> sigma_low_M27 = 0.7</span>
<span class="r-out co"><span class="r-pr">#></span> rsd_high_M27 = 0.026</span>
<span class="r-out co"><span class="r-pr">#></span> sigma_low_M31 = 0.7</span>
<span class="r-out co"><span class="r-pr">#></span> rsd_high_M31 = 0.026</span>
<span class="r-out co"><span class="r-pr">#></span> })</span>
<span class="r-out co"><span class="r-pr">#></span> model({</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0_model = DMTA_0 + eta.DMTA_0</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA(0) = DMTA_0_model</span>
<span class="r-out co"><span class="r-pr">#></span> k_M23 = exp(log_k_M23 + eta.log_k_M23)</span>
<span class="r-out co"><span class="r-pr">#></span> k_M27 = exp(log_k_M27 + eta.log_k_M27)</span>
<span class="r-out co"><span class="r-pr">#></span> k_M31 = exp(log_k_M31 + eta.log_k_M31)</span>
<span class="r-out co"><span class="r-pr">#></span> k1 = exp(log_k1 + eta.log_k1)</span>
<span class="r-out co"><span class="r-pr">#></span> k2 = exp(log_k2 + eta.log_k2)</span>
<span class="r-out co"><span class="r-pr">#></span> g = expit(g_qlogis + eta.g_qlogis)</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_1 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis)</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_2 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis)</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_3 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis)</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M23 = f_DMTA_tffm0_1</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M27 = f_DMTA_tffm0_2 * (1 - f_DMTA_tffm0_1)</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M31 = f_DMTA_tffm0_3 * (1 - f_DMTA_tffm0_2) * </span>
<span class="r-out co"><span class="r-pr">#></span> (1 - f_DMTA_tffm0_1)</span>
<span class="r-out co"><span class="r-pr">#></span> d/dt(DMTA) = -((k1 * g * exp(-k1 * time) + k2 * (1 - </span>
<span class="r-out co"><span class="r-pr">#></span> g) * exp(-k2 * time))/(g * exp(-k1 * time) + (1 - </span>
<span class="r-out co"><span class="r-pr">#></span> g) * exp(-k2 * time))) * DMTA</span>
<span class="r-out co"><span class="r-pr">#></span> d/dt(M23) = +f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + </span>
<span class="r-out co"><span class="r-pr">#></span> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) + </span>
<span class="r-out co"><span class="r-pr">#></span> (1 - g) * exp(-k2 * time))) * DMTA - k_M23 * M23</span>
<span class="r-out co"><span class="r-pr">#></span> d/dt(M27) = +f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + </span>
<span class="r-out co"><span class="r-pr">#></span> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) + </span>
<span class="r-out co"><span class="r-pr">#></span> (1 - g) * exp(-k2 * time))) * DMTA - k_M27 * M27 + </span>
<span class="r-out co"><span class="r-pr">#></span> k_M31 * M31</span>
<span class="r-out co"><span class="r-pr">#></span> d/dt(M31) = +f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + </span>
<span class="r-out co"><span class="r-pr">#></span> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) + </span>
<span class="r-out co"><span class="r-pr">#></span> (1 - g) * exp(-k2 * time))) * DMTA - k_M31 * M31</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA ~ add(sigma_low_DMTA) + prop(rsd_high_DMTA)</span>
<span class="r-out co"><span class="r-pr">#></span> M23 ~ add(sigma_low_M23) + prop(rsd_high_M23)</span>
<span class="r-out co"><span class="r-pr">#></span> M27 ~ add(sigma_low_M27) + prop(rsd_high_M27)</span>
<span class="r-out co"><span class="r-pr">#></span> M31 ~ add(sigma_low_M31) + prop(rsd_high_M31)</span>
<span class="r-out co"><span class="r-pr">#></span> })</span>
<span class="r-out co"><span class="r-pr">#></span> }</span>
<span class="r-out co"><span class="r-pr">#></span> <environment: 0x555560091f40></span>
<span class="r-in"><span class="co"># The focei fit takes about four minutes on my system</span></span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/base/system.time.html" class="external-link">system.time</a></span><span class="op">(</span></span>
<span class="r-in"> <span class="va">f_dmta_nlmixr_focei</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlmixr/man/nlmixr.html" class="external-link">nlmixr</a></span><span class="op">(</span><span class="va">f_dmta_mkin_tc</span>, est <span class="op">=</span> <span class="st">"focei"</span>,</span>
<span class="r-in"> control <span class="op">=</span> <span class="fu">nlmixr</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/nlmixr/man/foceiControl.html" class="external-link">foceiControl</a></span><span class="op">(</span>print <span class="op">=</span> <span class="fl">500</span><span class="op">)</span><span class="op">)</span></span>
<span class="r-in"><span class="op">)</span></span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BBBB;">ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BBBB;">ℹ</span> Need to run with the source intact to parse comments</span>
<span class="r-msg co"><span class="r-pr">#></span> → creating full model...</span>
<span class="r-msg co"><span class="r-pr">#></span> → pruning branches (`if`/`else`)...</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> → loading into <span style="color: #0000BB;">symengine</span> environment...</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> → creating full model...</span>
<span class="r-msg co"><span class="r-pr">#></span> → pruning branches (`if`/`else`)...</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> → loading into <span style="color: #0000BB;">symengine</span> environment...</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> → calculate jacobian</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:02 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → calculate sensitivities</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:04 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → calculate ∂(f)/∂(η)</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:01 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → calculate ∂(R²)/∂(η)</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:08 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → finding duplicate expressions in inner model...</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:07 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → optimizing duplicate expressions in inner model...</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:07 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → finding duplicate expressions in EBE model...</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:00 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → optimizing duplicate expressions in EBE model...</span>
<span class="r-out co"><span class="r-pr">#></span> [====|====|====|====|====|====|====|====|====|====] 0:00:00 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → compiling inner model...</span>
<span class="r-msg co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> → finding duplicate expressions in FD model...</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → optimizing duplicate expressions in FD model...</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → compiling EBE model...</span>
<span class="r-msg co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> → compiling events FD model...</span>
<span class="r-msg co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> Needed Covariates:</span>
<span class="r-out co"><span class="r-pr">#></span> [1] "CMT"</span>
<span class="r-msg co"><span class="r-pr">#></span> RxODE 1.1.4 using 8 threads (see ?getRxThreads)</span>
<span class="r-msg co"><span class="r-pr">#></span> no cache: create with `rxCreateCache()`</span>
<span class="r-out co"><span class="r-pr">#></span> <span style="font-weight: bold;">Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation</span>
<span class="r-out co"><span class="r-pr">#></span> F: Forward difference gradient approximation</span>
<span class="r-out co"><span class="r-pr">#></span> C: Central difference gradient approximation</span>
<span class="r-out co"><span class="r-pr">#></span> M: Mixed forward and central difference gradient approximation</span>
<span class="r-out co"><span class="r-pr">#></span> Unscaled parameters for Omegas=chol(solve(omega));</span>
<span class="r-out co"><span class="r-pr">#></span> Diagonals are transformed, as specified by foceiControl(diagXform=)</span>
<span class="r-out co"><span class="r-pr">#></span> |-----+---------------+-----------+-----------+-----------+-----------|</span>
<span class="r-out co"><span class="r-pr">#></span> | #| Objective Fun | DMTA_0 | log_k_M23 | log_k_M27 | log_k_M31 |</span>
<span class="r-out co"><span class="r-pr">#></span> |.....................| log_k1 | log_k2 | g_qlogis |f_DMTA_tffm0_1_qlogis |</span>
<span class="r-out co"><span class="r-pr">#></span> |.....................|f_DMTA_tffm0_2_qlogis |f_DMTA_tffm0_3_qlogis | sigma_low | rsd_high |</span>
<span class="r-out co"><span class="r-pr">#></span> |.....................| o1 | o2 | o3 | o4 |</span>
<span class="r-out co"><span class="r-pr">#></span> |.....................| o5 | o6 | o7 | o8 |</span>
<span class="r-out co"><span class="r-pr">#></span> <span style="text-decoration: underline;">|.....................| o9 | o10 |...........|...........|</span></span>
<span class="r-out co"><span class="r-pr">#></span> calculating covariance matrix</span>
<span class="r-out co"><span class="r-pr">#></span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> Calculating residuals/tables</span>
<span class="r-msg co"><span class="r-pr">#></span> done</span>
<span class="r-wrn co"><span class="r-pr">#></span> <span class="warning">Warning: </span>initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span>
<span class="r-wrn co"><span class="r-pr">#></span> <span class="warning">Warning: </span>ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span>
<span class="r-wrn co"><span class="r-pr">#></span> <span class="warning">Warning: </span>last objective function was not at minimum, possible problems in optimization</span>
<span class="r-wrn co"><span class="r-pr">#></span> <span class="warning">Warning: </span>S matrix non-positive definite</span>
<span class="r-wrn co"><span class="r-pr">#></span> <span class="warning">Warning: </span>using R matrix to calculate covariance</span>
<span class="r-wrn co"><span class="r-pr">#></span> <span class="warning">Warning: </span>gradient problems with initial estimate and covariance; see $scaleInfo</span>
<span class="r-out co"><span class="r-pr">#></span> user system elapsed </span>
<span class="r-out co"><span class="r-pr">#></span> 553.721 10.570 564.258 </span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">f_dmta_nlmixr_focei</span><span class="op">)</span></span>
<span class="r-out co"><span class="r-pr">#></span> nlmixr version used for fitting: 2.0.6 </span>
<span class="r-out co"><span class="r-pr">#></span> mkin version used for pre-fitting: 1.1.0 </span>
<span class="r-out co"><span class="r-pr">#></span> R version used for fitting: 4.1.2 </span>
<span class="r-out co"><span class="r-pr">#></span> Date of fit: Wed Mar 2 13:27:22 2022 </span>
<span class="r-out co"><span class="r-pr">#></span> Date of summary: Wed Mar 2 13:27:22 2022 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Equations:</span>
<span class="r-out co"><span class="r-pr">#></span> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *</span>
<span class="r-out co"><span class="r-pr">#></span> time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))</span>
<span class="r-out co"><span class="r-pr">#></span> * DMTA</span>
<span class="r-out co"><span class="r-pr">#></span> d_M23/dt = + f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)</span>
<span class="r-out co"><span class="r-pr">#></span> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *</span>
<span class="r-out co"><span class="r-pr">#></span> exp(-k2 * time))) * DMTA - k_M23 * M23</span>
<span class="r-out co"><span class="r-pr">#></span> d_M27/dt = + f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)</span>
<span class="r-out co"><span class="r-pr">#></span> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *</span>
<span class="r-out co"><span class="r-pr">#></span> exp(-k2 * time))) * DMTA - k_M27 * M27 + k_M31 * M31</span>
<span class="r-out co"><span class="r-pr">#></span> d_M31/dt = + f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)</span>
<span class="r-out co"><span class="r-pr">#></span> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *</span>
<span class="r-out co"><span class="r-pr">#></span> exp(-k2 * time))) * DMTA - k_M31 * M31</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Data:</span>
<span class="r-out co"><span class="r-pr">#></span> 563 observations of 4 variable(s) grouped in 6 datasets</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Degradation model predictions using RxODE</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Fitted in 564.08 s</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Variance model: Two-component variance function </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Mean of starting values for individual parameters:</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 log_k_M23 log_k_M27 log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2 </span>
<span class="r-out co"><span class="r-pr">#></span> 98.7132 -3.9216 -4.3306 -4.2442 0.1376 0.1388 </span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_3 log_k1 log_k2 g_qlogis </span>
<span class="r-out co"><span class="r-pr">#></span> -1.7554 -2.2352 -3.7758 0.4363 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Mean of starting values for error model parameters:</span>
<span class="r-out co"><span class="r-pr">#></span> sigma_low rsd_high </span>
<span class="r-out co"><span class="r-pr">#></span> 0.70012 0.02577 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Fixed degradation parameter values:</span>
<span class="r-out co"><span class="r-pr">#></span> None</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Results:</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Likelihood calculated by focei </span>
<span class="r-out co"><span class="r-pr">#></span> AIC BIC logLik</span>
<span class="r-out co"><span class="r-pr">#></span> 1857 1952 -906.5</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Optimised parameters:</span>
<span class="r-out co"><span class="r-pr">#></span> est. lower upper</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 98.0116 95.243 100.780</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M23 -4.0184 -5.213 -2.824</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M27 -4.2033 -5.013 -3.394</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M31 -4.1728 -4.999 -3.347</span>
<span class="r-out co"><span class="r-pr">#></span> log_k1 -2.4831 -3.398 -1.568</span>
<span class="r-out co"><span class="r-pr">#></span> log_k2 -3.8423 -5.450 -2.235</span>
<span class="r-out co"><span class="r-pr">#></span> g_qlogis 0.4682 -2.188 3.124</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_1_qlogis -2.0823 -2.591 -1.574</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_2_qlogis -2.1265 -2.686 -1.567</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_3_qlogis -2.0795 -2.735 -1.424</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Correlation: </span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 lg__M23 lg__M27 lg__M31 log_k1 log_k2 g_qlogs</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M23 -0.0154 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M27 -0.0164 0.0031 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M31 -0.0131 0.0018 0.0541 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k1 -0.0306 0.0045 0.0019 0.0011 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k2 0.0527 -0.0043 -0.0037 -0.0003 0.0375 </span>
<span class="r-out co"><span class="r-pr">#></span> g_qlogis -0.1005 0.0076 0.0074 0.0013 0.0910 0.1151 </span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_1_qlogis -0.0308 0.0362 0.0024 0.0021 0.0058 -0.0070 0.0145</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_2_qlogis -0.0309 0.0062 0.0353 -0.0229 0.0047 -0.0082 0.0146</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_3_qlogis -0.0308 0.0061 0.0419 0.0547 0.0033 -0.0055 0.0104</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_0_1 f_DMTA_0_2</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M23 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M27 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M31 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k1 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k2 </span>
<span class="r-out co"><span class="r-pr">#></span> g_qlogis </span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_1_qlogis </span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_2_qlogis 0.0118 </span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_3_qlogis 0.0086 -0.0057 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Random effects (omega):</span>
<span class="r-out co"><span class="r-pr">#></span> eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31</span>
<span class="r-out co"><span class="r-pr">#></span> eta.DMTA_0 4.224 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M23 0.000 1.041 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M27 0.000 0.000 0.4609 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M31 0.000 0.000 0.0000 0.4728</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k1 0.000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k2 0.000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.g_qlogis 0.000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_1_qlogis 0.000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_2_qlogis 0.000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_3_qlogis 0.000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k1 eta.log_k2 eta.g_qlogis</span>
<span class="r-out co"><span class="r-pr">#></span> eta.DMTA_0 0.000 0.000 0.00</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M23 0.000 0.000 0.00</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M27 0.000 0.000 0.00</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M31 0.000 0.000 0.00</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k1 0.635 0.000 0.00</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k2 0.000 1.662 0.00</span>
<span class="r-out co"><span class="r-pr">#></span> eta.g_qlogis 0.000 0.000 4.36</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_1_qlogis 0.000 0.000 0.00</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_2_qlogis 0.000 0.000 0.00</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_3_qlogis 0.000 0.000 0.00</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_1_qlogis eta.f_DMTA_tffm0_2_qlogis</span>
<span class="r-out co"><span class="r-pr">#></span> eta.DMTA_0 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M23 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M27 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M31 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k1 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k2 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.g_qlogis 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_1_qlogis 0.1909 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_2_qlogis 0.0000 0.2232</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_3_qlogis 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_3_qlogis</span>
<span class="r-out co"><span class="r-pr">#></span> eta.DMTA_0 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M23 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M27 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M31 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k1 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k2 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.g_qlogis 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_1_qlogis 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_2_qlogis 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_3_qlogis 0.3149</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Variance model:</span>
<span class="r-out co"><span class="r-pr">#></span> sigma_low rsd_high </span>
<span class="r-out co"><span class="r-pr">#></span> 0.82408 0.03045 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Backtransformed parameters:</span>
<span class="r-out co"><span class="r-pr">#></span> est. lower upper</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 98.01163 95.243379 100.77988</span>
<span class="r-out co"><span class="r-pr">#></span> k_M23 0.01798 0.005443 0.05940</span>
<span class="r-out co"><span class="r-pr">#></span> k_M27 0.01495 0.006652 0.03358</span>
<span class="r-out co"><span class="r-pr">#></span> k_M31 0.01541 0.006746 0.03520</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M23 0.11083 NA NA</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M27 0.09474 NA NA</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M31 0.08827 NA NA</span>
<span class="r-out co"><span class="r-pr">#></span> k1 0.08348 0.033429 0.20848</span>
<span class="r-out co"><span class="r-pr">#></span> k2 0.02144 0.004296 0.10704</span>
<span class="r-out co"><span class="r-pr">#></span> g 0.61496 0.100857 0.95788</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Resulting formation fractions:</span>
<span class="r-out co"><span class="r-pr">#></span> ff</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_M23 0.11083</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_M27 0.09474</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_M31 0.08827</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_sink 0.70616</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Estimated disappearance times:</span>
<span class="r-out co"><span class="r-pr">#></span> DT50 DT90 DT50back DT50_k1 DT50_k2</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA 12.96 64.24 19.34 8.303 32.32</span>
<span class="r-out co"><span class="r-pr">#></span> M23 38.55 128.06 NA NA NA</span>
<span class="r-out co"><span class="r-pr">#></span> M27 46.38 154.06 NA NA NA</span>
<span class="r-out co"><span class="r-pr">#></span> M31 44.98 149.43 NA NA NA</span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_dmta_nlmixr_focei</span><span class="op">)</span></span>
<span class="r-plt img"><img src="dimethenamid_2018-1.png" alt="" width="700" height="433"></span>
<span class="r-in"><span class="co"># Using saemix takes about 18 minutes</span></span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/base/system.time.html" class="external-link">system.time</a></span><span class="op">(</span></span>
<span class="r-in"> <span class="va">f_dmta_saemix</span> <span class="op"><-</span> <span class="fu"><a href="saem.html">saem</a></span><span class="op">(</span><span class="va">f_dmta_mkin_tc</span>, test_log_parms <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span class="r-in"><span class="op">)</span></span>
<span class="r-out co"><span class="r-pr">#></span> DINTDY- T (=R1) illegal </span>
<span class="r-out co"><span class="r-pr">#></span> In above message, R1 = 115.507</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> T not in interval TCUR - HU (= R1) to TCUR (=R2) </span>
<span class="r-out co"><span class="r-pr">#></span> In above message, R1 = 112.133, R2 = 113.577</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> DLSODA- At T (=R1), too much accuracy requested </span>
<span class="r-out co"><span class="r-pr">#></span> for precision of machine.. See TOLSF (=R2) </span>
<span class="r-out co"><span class="r-pr">#></span> In above message, R1 = 55.3899, R2 = nan</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-err co"><span class="r-pr">#></span> <span class="error">Error in out[available, var]:</span> (subscript) logical subscript too long</span>
<span class="r-msg co"><span class="r-pr">#></span> Timing stopped at: 12.58 0 12.58</span>
<span class="r-msg co"><span class="r-pr">#></span> Timing stopped at: 12.99 0.008 13</span>
<span class="r-in"></span>
<span class="r-in"><span class="co"># nlmixr with est = "saem" is pretty fast with default iteration numbers, most</span></span>
<span class="r-in"><span class="co"># of the time (about 2.5 minutes) is spent for calculating the log likelihood at the end</span></span>
<span class="r-in"><span class="co"># The likelihood calculated for the nlmixr fit is much lower than that found by saemix</span></span>
<span class="r-in"><span class="co"># Also, the trace plot and the plot of the individual predictions is not</span></span>
<span class="r-in"><span class="co"># convincing for the parent. It seems we are fitting an overparameterised</span></span>
<span class="r-in"><span class="co"># model, so the result we get strongly depends on starting parameters and control settings.</span></span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/base/system.time.html" class="external-link">system.time</a></span><span class="op">(</span></span>
<span class="r-in"> <span class="va">f_dmta_nlmixr_saem</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlmixr/man/nlmixr.html" class="external-link">nlmixr</a></span><span class="op">(</span><span class="va">f_dmta_mkin_tc</span>, est <span class="op">=</span> <span class="st">"saem"</span>,</span>
<span class="r-in"> control <span class="op">=</span> <span class="fu">nlmixr</span><span class="fu">::</span><span class="fu"><a href="https://rdrr.io/pkg/nlmixr/man/saemControl.html" class="external-link">saemControl</a></span><span class="op">(</span>print <span class="op">=</span> <span class="fl">500</span>, logLik <span class="op">=</span> <span class="cn">TRUE</span>, nmc <span class="op">=</span> <span class="fl">9</span><span class="op">)</span><span class="op">)</span></span>
<span class="r-in"><span class="op">)</span></span>
<span class="r-msg co"><span class="r-pr">#></span> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BBBB;">ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BBBB;">ℹ</span> Need to run with the source intact to parse comments</span>
<span class="r-msg co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → generate SAEM model</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-out co"><span class="r-pr">#></span> 1: 98.7179 -3.4492 -3.2592 -3.6952 -2.1629 -2.7824 0.8990 -2.8080 -2.7380 -2.8041 2.7789 0.6848 0.8170 0.7125 0.8550 1.5200 2.9882 0.3073 0.2850 0.2877 4.0480 0.4153 4.5214 0.3775 4.4419 0.4181 3.7069 0.5935</span>
<span class="r-out co"><span class="r-pr">#></span> 500: 97.8519 -4.3891 -4.0888 -4.1247 -2.9246 -4.2755 2.6294 -2.1212 -2.1380 -2.0739 3.1293 1.2665 0.2763 0.3429 0.5743 1.5561 4.4991 0.1499 0.1551 0.3103 0.9514 0.0341 0.4846 0.1068 0.6597 0.0767 0.7836 0.0360</span>
<span class="r-msg co"><span class="r-pr">#></span> Calculating covariance matrix</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> → creating full model...</span>
<span class="r-msg co"><span class="r-pr">#></span> → pruning branches (`if`/`else`)...</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> → loading into <span style="color: #0000BB;">symengine</span> environment...</span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> → compiling EBE model...</span>
<span class="r-msg co"><span class="r-pr">#></span> </span>
<span class="r-msg co"><span class="r-pr">#></span> <span style="color: #00BB00;">✔</span> done</span>
<span class="r-msg co"><span class="r-pr">#></span> Needed Covariates:</span>
<span class="r-out co"><span class="r-pr">#></span> [1] "CMT"</span>
<span class="r-msg co"><span class="r-pr">#></span> Calculating residuals/tables</span>
<span class="r-msg co"><span class="r-pr">#></span> done</span>
<span class="r-out co"><span class="r-pr">#></span> user system elapsed </span>
<span class="r-out co"><span class="r-pr">#></span> 785.825 3.841 153.598 </span>
<span class="r-in"><span class="fu">traceplot</span><span class="op">(</span><span class="va">f_dmta_nlmixr_saem</span><span class="op">$</span><span class="va">nm</span><span class="op">)</span></span>
<span class="r-err co"><span class="r-pr">#></span> <span class="error">Error in traceplot(f_dmta_nlmixr_saem$nm):</span> could not find function "traceplot"</span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">f_dmta_nlmixr_saem</span><span class="op">)</span></span>
<span class="r-out co"><span class="r-pr">#></span> nlmixr version used for fitting: 2.0.6 </span>
<span class="r-out co"><span class="r-pr">#></span> mkin version used for pre-fitting: 1.1.0 </span>
<span class="r-out co"><span class="r-pr">#></span> R version used for fitting: 4.1.2 </span>
<span class="r-out co"><span class="r-pr">#></span> Date of fit: Wed Mar 2 13:30:09 2022 </span>
<span class="r-out co"><span class="r-pr">#></span> Date of summary: Wed Mar 2 13:30:09 2022 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Equations:</span>
<span class="r-out co"><span class="r-pr">#></span> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *</span>
<span class="r-out co"><span class="r-pr">#></span> time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))</span>
<span class="r-out co"><span class="r-pr">#></span> * DMTA</span>
<span class="r-out co"><span class="r-pr">#></span> d_M23/dt = + f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)</span>
<span class="r-out co"><span class="r-pr">#></span> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *</span>
<span class="r-out co"><span class="r-pr">#></span> exp(-k2 * time))) * DMTA - k_M23 * M23</span>
<span class="r-out co"><span class="r-pr">#></span> d_M27/dt = + f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)</span>
<span class="r-out co"><span class="r-pr">#></span> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *</span>
<span class="r-out co"><span class="r-pr">#></span> exp(-k2 * time))) * DMTA - k_M27 * M27 + k_M31 * M31</span>
<span class="r-out co"><span class="r-pr">#></span> d_M31/dt = + f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)</span>
<span class="r-out co"><span class="r-pr">#></span> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *</span>
<span class="r-out co"><span class="r-pr">#></span> exp(-k2 * time))) * DMTA - k_M31 * M31</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Data:</span>
<span class="r-out co"><span class="r-pr">#></span> 563 observations of 4 variable(s) grouped in 6 datasets</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Degradation model predictions using RxODE</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Fitted in 153.313 s</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Variance model: Two-component variance function </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Mean of starting values for individual parameters:</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 log_k_M23 log_k_M27 log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2 </span>
<span class="r-out co"><span class="r-pr">#></span> 98.7132 -3.9216 -4.3306 -4.2442 0.1376 0.1388 </span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_3 log_k1 log_k2 g_qlogis </span>
<span class="r-out co"><span class="r-pr">#></span> -1.7554 -2.2352 -3.7758 0.4363 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Mean of starting values for error model parameters:</span>
<span class="r-out co"><span class="r-pr">#></span> sigma_low_DMTA rsd_high_DMTA sigma_low_M23 rsd_high_M23 sigma_low_M27 </span>
<span class="r-out co"><span class="r-pr">#></span> 0.70012 0.02577 0.70012 0.02577 0.70012 </span>
<span class="r-out co"><span class="r-pr">#></span> rsd_high_M27 sigma_low_M31 rsd_high_M31 </span>
<span class="r-out co"><span class="r-pr">#></span> 0.02577 0.70012 0.02577 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Fixed degradation parameter values:</span>
<span class="r-out co"><span class="r-pr">#></span> None</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Results:</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Likelihood calculated by focei </span>
<span class="r-out co"><span class="r-pr">#></span> AIC BIC logLik</span>
<span class="r-out co"><span class="r-pr">#></span> 1966 2088 -955.2</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Optimised parameters:</span>
<span class="r-out co"><span class="r-pr">#></span> est. lower upper</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 97.852 95.86386 99.840</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M23 -4.389 -5.35084 -3.427</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M27 -4.089 -4.54432 -3.633</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M31 -4.125 -4.63280 -3.617</span>
<span class="r-out co"><span class="r-pr">#></span> log_k1 -2.925 -3.54158 -2.308</span>
<span class="r-out co"><span class="r-pr">#></span> log_k2 -4.275 -5.81760 -2.733</span>
<span class="r-out co"><span class="r-pr">#></span> g_qlogis 2.629 -0.01785 5.277</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_1_qlogis -2.121 -2.44462 -1.798</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_2_qlogis -2.138 -2.47804 -1.798</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_3_qlogis -2.074 -2.53581 -1.612</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Correlation: </span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 lg__M23 lg__M27 lg__M31 log_k1 log_k2 g_qlogs</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M23 -0.0164 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M27 -0.0267 0.0028 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M31 -0.0179 0.0023 0.0755 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k1 0.0385 -0.0034 -0.0054 -0.0029 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k2 0.0381 0.0115 0.0087 0.0093 0.0786 </span>
<span class="r-out co"><span class="r-pr">#></span> g_qlogis -0.0656 0.0021 0.0051 0.0001 -0.1177 -0.4389 </span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_1_qlogis -0.0604 0.0554 0.0054 0.0039 -0.0082 -0.0022 0.0119</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_2_qlogis -0.0601 0.0091 0.0577 -0.0350 -0.0081 -0.0057 0.0137</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_3_qlogis -0.0515 0.0083 0.0569 0.0729 -0.0059 0.0005 0.0073</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_0_1 f_DMTA_0_2</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M23 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M27 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M31 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k1 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k2 </span>
<span class="r-out co"><span class="r-pr">#></span> g_qlogis </span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_1_qlogis </span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_2_qlogis 0.0167 </span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_tffm0_3_qlogis 0.0145 -0.0060 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Random effects (omega):</span>
<span class="r-out co"><span class="r-pr">#></span> eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31</span>
<span class="r-out co"><span class="r-pr">#></span> eta.DMTA_0 3.129 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M23 0.000 1.266 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M27 0.000 0.000 0.2763 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M31 0.000 0.000 0.0000 0.3429</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k1 0.000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k2 0.000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.g_qlogis 0.000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_1_qlogis 0.000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_2_qlogis 0.000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_3_qlogis 0.000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k1 eta.log_k2 eta.g_qlogis</span>
<span class="r-out co"><span class="r-pr">#></span> eta.DMTA_0 0.0000 0.000 0.000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M23 0.0000 0.000 0.000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M27 0.0000 0.000 0.000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M31 0.0000 0.000 0.000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k1 0.5743 0.000 0.000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k2 0.0000 1.556 0.000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.g_qlogis 0.0000 0.000 4.499</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_1_qlogis 0.0000 0.000 0.000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_2_qlogis 0.0000 0.000 0.000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_3_qlogis 0.0000 0.000 0.000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_1_qlogis eta.f_DMTA_tffm0_2_qlogis</span>
<span class="r-out co"><span class="r-pr">#></span> eta.DMTA_0 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M23 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M27 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M31 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k1 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k2 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.g_qlogis 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_1_qlogis 0.1499 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_2_qlogis 0.0000 0.1551</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_3_qlogis 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_3_qlogis</span>
<span class="r-out co"><span class="r-pr">#></span> eta.DMTA_0 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M23 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M27 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k_M31 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k1 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.log_k2 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.g_qlogis 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_1_qlogis 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_2_qlogis 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> eta.f_DMTA_tffm0_3_qlogis 0.3103</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Variance model:</span>
<span class="r-out co"><span class="r-pr">#></span> sigma_low_DMTA rsd_high_DMTA sigma_low_M23 rsd_high_M23 sigma_low_M27 </span>
<span class="r-out co"><span class="r-pr">#></span> 0.95135 0.03412 0.48455 0.10682 0.65969 </span>
<span class="r-out co"><span class="r-pr">#></span> rsd_high_M27 sigma_low_M31 rsd_high_M31 </span>
<span class="r-out co"><span class="r-pr">#></span> 0.07670 0.78365 0.03598 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Backtransformed parameters:</span>
<span class="r-out co"><span class="r-pr">#></span> est. lower upper</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 97.85189 95.863863 99.83992</span>
<span class="r-out co"><span class="r-pr">#></span> k_M23 0.01241 0.004744 0.03247</span>
<span class="r-out co"><span class="r-pr">#></span> k_M27 0.01676 0.010627 0.02643</span>
<span class="r-out co"><span class="r-pr">#></span> k_M31 0.01617 0.009727 0.02687</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M23 0.10705 NA NA</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M27 0.09417 NA NA</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M31 0.08919 NA NA</span>
<span class="r-out co"><span class="r-pr">#></span> k1 0.05369 0.028968 0.09950</span>
<span class="r-out co"><span class="r-pr">#></span> k2 0.01391 0.002975 0.06500</span>
<span class="r-out co"><span class="r-pr">#></span> g 0.93273 0.495538 0.99492</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Resulting formation fractions:</span>
<span class="r-out co"><span class="r-pr">#></span> ff</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_M23 0.10705</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_M27 0.09417</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_M31 0.08919</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_sink 0.70959</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Estimated disappearance times:</span>
<span class="r-out co"><span class="r-pr">#></span> DT50 DT90 DT50back DT50_k1 DT50_k2</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA 13.81 49.3 14.84 12.91 49.85</span>
<span class="r-out co"><span class="r-pr">#></span> M23 55.85 185.5 NA NA NA</span>
<span class="r-out co"><span class="r-pr">#></span> M27 41.36 137.4 NA NA NA</span>
<span class="r-out co"><span class="r-pr">#></span> M31 42.87 142.4 NA NA NA</span>
<span class="r-in"><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_dmta_nlmixr_saem</span><span class="op">)</span></span>
<span class="r-plt img"><img src="dimethenamid_2018-2.png" alt="" width="700" height="433"></span>
<span class="r-in"><span class="co"># }</span></span>
</code></pre></div>
</div>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top"><h2 data-toc-skip>Contents</h2>
</nav></div>
</div>
<footer><div class="copyright">
<p></p><p>Developed by Johannes Ranke.</p>
</div>
<div class="pkgdown">
<p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.2.</p>
</div>
</footer></div>
</body></html>
|