1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Aerobic soil degradation data on dimethenamid and dimethenamid-P from the EU assessment in 2018 — dimethenamid_2018 • mkin</title><!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"><script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css"><script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"><script src="../pkgdown.js"></script><meta property="og:title" content="Aerobic soil degradation data on dimethenamid and dimethenamid-P from the EU assessment in 2018 — dimethenamid_2018"><meta property="og:description" content="The datasets were extracted from the active substance evaluation dossier
published by EFSA. Kinetic evaluations shown for these datasets are intended
to illustrate and advance kinetic modelling. The fact that these data and
some results are shown here does not imply a license to use them in the
context of pesticide registrations, as the use of the data may be
constrained by data protection regulations."><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]--></head><body data-spy="scroll" data-target="#toc">
<div class="container template-reference-topic">
<header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.4</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav"><li>
<a href="../reference/index.html">Reference</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
Articles
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu"><li>
<a href="../articles/mkin.html">Introduction to mkin</a>
</li>
<li class="divider">
<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>
<li>
<a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
</li>
<li>
<a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
</li>
<li>
<a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
</li>
<li class="divider">
<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>
<li>
<a href="../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>
</li>
<li>
<a href="../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>
</li>
<li>
<a href="../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>
</li>
<li>
<a href="../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>
</li>
<li>
<a href="../articles/web_only/multistart.html">Short demo of the multistart method</a>
</li>
<li class="divider">
<li class="dropdown-header">Performance</li>
<li>
<a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
</li>
<li>
<a href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a>
</li>
<li>
<a href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>
</li>
<li class="divider">
<li class="dropdown-header">Miscellaneous</li>
<li>
<a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
</li>
<li>
<a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
</li>
</ul></li>
<li>
<a href="../news/index.html">News</a>
</li>
</ul><ul class="nav navbar-nav navbar-right"><li>
<a href="https://github.com/jranke/mkin/" class="external-link">
<span class="fab fa-github fa-lg"></span>
</a>
</li>
</ul></div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
</header><div class="row">
<div class="col-md-9 contents">
<div class="page-header">
<h1>Aerobic soil degradation data on dimethenamid and dimethenamid-P from the EU assessment in 2018</h1>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/R/dimethenamid_2018.R" class="external-link"><code>R/dimethenamid_2018.R</code></a></small>
<div class="hidden name"><code>dimethenamid_2018.Rd</code></div>
</div>
<div class="ref-description">
<p>The datasets were extracted from the active substance evaluation dossier
published by EFSA. Kinetic evaluations shown for these datasets are intended
to illustrate and advance kinetic modelling. The fact that these data and
some results are shown here does not imply a license to use them in the
context of pesticide registrations, as the use of the data may be
constrained by data protection regulations.</p>
</div>
<div id="ref-usage">
<div class="sourceCode"><pre class="sourceCode r"><code><span><span class="va">dimethenamid_2018</span></span></code></pre></div>
</div>
<div id="format">
<h2>Format</h2>
<p>An <a href="mkindsg.html">mkindsg</a> object grouping seven datasets with some meta information</p>
</div>
<div id="source">
<h2>Source</h2>
<p>Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria (2018)
Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour
Rev. 2 - November 2017
https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716</p>
</div>
<div id="details">
<h2>Details</h2>
<p>The R code used to create this data object is installed with this package
in the 'dataset_generation' directory. In the code, page numbers are given for
specific pieces of information in the comments.</p>
</div>
<div id="ref-examples">
<h2>Examples</h2>
<div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">dimethenamid_2018</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> <mkindsg> holding 7 mkinds objects</span>
<span class="r-out co"><span class="r-pr">#></span> Title $title: Aerobic soil degradation data on dimethenamid-P from the EU assessment in 2018 </span>
<span class="r-out co"><span class="r-pr">#></span> Occurrence of observed compounds $observed_n:</span>
<span class="r-out co"><span class="r-pr">#></span> DMTAP M23 M27 M31 DMTA </span>
<span class="r-out co"><span class="r-pr">#></span> 3 7 7 7 4 </span>
<span class="r-out co"><span class="r-pr">#></span> Time normalisation factors $f_time_norm:</span>
<span class="r-out co"><span class="r-pr">#></span> [1] 1.0000000 0.9706477 1.2284784 1.2284784 0.6233856 0.7678922 0.6733938</span>
<span class="r-out co"><span class="r-pr">#></span> Meta information $meta:</span>
<span class="r-out co"><span class="r-pr">#></span> study usda_soil_type study_moisture_ref_type rel_moisture</span>
<span class="r-out co"><span class="r-pr">#></span> Calke Unsworth 2014 Sandy loam pF2 1.00</span>
<span class="r-out co"><span class="r-pr">#></span> Borstel Staudenmaier 2009 Sand pF1 0.50</span>
<span class="r-out co"><span class="r-pr">#></span> Elliot 1 Wendt 1997 Clay loam pF2.5 0.75</span>
<span class="r-out co"><span class="r-pr">#></span> Elliot 2 Wendt 1997 Clay loam pF2.5 0.75</span>
<span class="r-out co"><span class="r-pr">#></span> Flaach König 1996 Sandy clay loam pF1 0.40</span>
<span class="r-out co"><span class="r-pr">#></span> BBA 2.2 König 1995 Loamy sand pF1 0.40</span>
<span class="r-out co"><span class="r-pr">#></span> BBA 2.3 König 1995 Sandy loam pF1 0.40</span>
<span class="r-out co"><span class="r-pr">#></span> study_ref_moisture temperature</span>
<span class="r-out co"><span class="r-pr">#></span> Calke NA 20</span>
<span class="r-out co"><span class="r-pr">#></span> Borstel 23.00 20</span>
<span class="r-out co"><span class="r-pr">#></span> Elliot 1 33.37 23</span>
<span class="r-out co"><span class="r-pr">#></span> Elliot 2 33.37 23</span>
<span class="r-out co"><span class="r-pr">#></span> Flaach NA 20</span>
<span class="r-out co"><span class="r-pr">#></span> BBA 2.2 NA 20</span>
<span class="r-out co"><span class="r-pr">#></span> BBA 2.3 NA 20</span>
<span class="r-in"><span><span class="va">dmta_ds</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="fl">1</span><span class="op">:</span><span class="fl">7</span>, <span class="kw">function</span><span class="op">(</span><span class="va">i</span><span class="op">)</span> <span class="op">{</span></span></span>
<span class="r-in"><span> <span class="va">ds_i</span> <span class="op"><-</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span><span class="op">[[</span><span class="va">i</span><span class="op">]</span><span class="op">]</span><span class="op">$</span><span class="va">data</span></span></span>
<span class="r-in"><span> <span class="va">ds_i</span><span class="op">[</span><span class="va">ds_i</span><span class="op">$</span><span class="va">name</span> <span class="op">==</span> <span class="st">"DMTAP"</span>, <span class="st">"name"</span><span class="op">]</span> <span class="op"><-</span> <span class="st">"DMTA"</span></span></span>
<span class="r-in"><span> <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op"><-</span> <span class="va">ds_i</span><span class="op">$</span><span class="va">time</span> <span class="op">*</span> <span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">f_time_norm</span><span class="op">[</span><span class="va">i</span><span class="op">]</span></span></span>
<span class="r-in"><span> <span class="va">ds_i</span></span></span>
<span class="r-in"><span><span class="op">}</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">)</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">sapply</a></span><span class="op">(</span><span class="va">dimethenamid_2018</span><span class="op">$</span><span class="va">ds</span>, <span class="kw">function</span><span class="op">(</span><span class="va">ds</span><span class="op">)</span> <span class="va">ds</span><span class="op">$</span><span class="va">title</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/cbind.html" class="external-link">rbind</a></span><span class="op">(</span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span>, <span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 1"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span></span>
<span class="r-in"><span><span class="va">dmta_ds</span><span class="op">[[</span><span class="st">"Elliot 2"</span><span class="op">]</span><span class="op">]</span> <span class="op"><-</span> <span class="cn">NULL</span></span></span>
<span class="r-in"><span><span class="co"># \dontrun{</span></span></span>
<span class="r-in"><span><span class="co"># We don't use DFOP for the parent compound, as this gives numerical</span></span></span>
<span class="r-in"><span><span class="co"># instabilities in the fits</span></span></span>
<span class="r-in"><span><span class="va">sfo_sfo3p</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span></span></span>
<span class="r-in"><span> DMTA <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M23"</span>, <span class="st">"M27"</span>, <span class="st">"M31"</span><span class="op">)</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> M23 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> M27 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> M31 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"M27"</span>, sink <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> quiet <span class="op">=</span> <span class="cn">TRUE</span></span></span>
<span class="r-in"><span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="va">dmta_sfo_sfo3p_tc</span> <span class="op"><-</span> <span class="fu"><a href="mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="st">"SFO-SFO3+"</span> <span class="op">=</span> <span class="va">sfo_sfo3p</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> <span class="va">dmta_ds</span>, error_model <span class="op">=</span> <span class="st">"tc"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">dmta_sfo_sfo3p_tc</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> <mmkin> object</span>
<span class="r-out co"><span class="r-pr">#></span> Status of individual fits:</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> dataset</span>
<span class="r-out co"><span class="r-pr">#></span> model Calke Borstel Flaach BBA 2.2 BBA 2.3 Elliot</span>
<span class="r-out co"><span class="r-pr">#></span> SFO-SFO3+ OK OK OK OK OK OK </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> OK: No warnings</span>
<span class="r-in"><span><span class="co"># The default (test_log_parms = FALSE) gives an undue</span></span></span>
<span class="r-in"><span><span class="co"># influence of ill-defined rate constants that have</span></span></span>
<span class="r-in"><span><span class="co"># extremely small values:</span></span></span>
<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="fu"><a href="mixed.html">mixed</a></span><span class="op">(</span><span class="va">dmta_sfo_sfo3p_tc</span><span class="op">)</span>, test_log_parms <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="co"># If we disregards ill-defined rate constants, the results</span></span></span>
<span class="r-in"><span><span class="co"># look more plausible, but the truth is likely to be in</span></span></span>
<span class="r-in"><span><span class="co"># between these variants</span></span></span>
<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="fu"><a href="mixed.html">mixed</a></span><span class="op">(</span><span class="va">dmta_sfo_sfo3p_tc</span><span class="op">)</span>, test_log_parms <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span>
<span class="r-plt img"><img src="dimethenamid_2018-1.png" alt="" width="700" height="433"></span>
<span class="r-in"><span><span class="co"># We can also specify a default value for the failing</span></span></span>
<span class="r-in"><span><span class="co"># log parameters, to mimic FOCUS guidance</span></span></span>
<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="fu"><a href="mixed.html">mixed</a></span><span class="op">(</span><span class="va">dmta_sfo_sfo3p_tc</span><span class="op">)</span>, test_log_parms <span class="op">=</span> <span class="cn">TRUE</span>,</span></span>
<span class="r-in"><span> default_log_parms <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/Log.html" class="external-link">log</a></span><span class="op">(</span><span class="fl">2</span><span class="op">)</span><span class="op">/</span><span class="fl">1000</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="co"># As these attempts are not satisfying, we use nonlinear mixed-effects models</span></span></span>
<span class="r-in"><span><span class="co"># f_dmta_nlme_tc <- nlme(dmta_sfo_sfo3p_tc)</span></span></span>
<span class="r-in"><span><span class="co"># nlme reaches maxIter = 50 without convergence</span></span></span>
<span class="r-in"><span><span class="va">f_dmta_saem_tc</span> <span class="op"><-</span> <span class="fu"><a href="saem.html">saem</a></span><span class="op">(</span><span class="va">dmta_sfo_sfo3p_tc</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="co"># I am commenting out the convergence plot as rendering them</span></span></span>
<span class="r-in"><span><span class="co"># with pkgdown fails (at least without further tweaks to the</span></span></span>
<span class="r-in"><span><span class="co"># graphics device used)</span></span></span>
<span class="r-in"><span><span class="co">#saemix::plot(f_dmta_saem_tc$so, plot.type = "convergence")</span></span></span>
<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">f_dmta_saem_tc</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> saemix version used for fitting: 3.2 </span>
<span class="r-out co"><span class="r-pr">#></span> mkin version used for pre-fitting: 1.2.4 </span>
<span class="r-out co"><span class="r-pr">#></span> R version used for fitting: 4.3.0 </span>
<span class="r-out co"><span class="r-pr">#></span> Date of fit: Fri May 19 09:15:21 2023 </span>
<span class="r-out co"><span class="r-pr">#></span> Date of summary: Fri May 19 09:15:21 2023 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Equations:</span>
<span class="r-out co"><span class="r-pr">#></span> d_DMTA/dt = - k_DMTA * DMTA</span>
<span class="r-out co"><span class="r-pr">#></span> d_M23/dt = + f_DMTA_to_M23 * k_DMTA * DMTA - k_M23 * M23</span>
<span class="r-out co"><span class="r-pr">#></span> d_M27/dt = + f_DMTA_to_M27 * k_DMTA * DMTA - k_M27 * M27 + k_M31 * M31</span>
<span class="r-out co"><span class="r-pr">#></span> d_M31/dt = + f_DMTA_to_M31 * k_DMTA * DMTA - k_M31 * M31</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Data:</span>
<span class="r-out co"><span class="r-pr">#></span> 563 observations of 4 variable(s) grouped in 6 datasets</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Model predictions using solution type deSolve </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Fitted in 282.941 s</span>
<span class="r-out co"><span class="r-pr">#></span> Using 300, 100 iterations and 9 chains</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Variance model: Two-component variance function </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Starting values for degradation parameters:</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 log_k_DMTA log_k_M23 log_k_M27 log_k_M31 f_DMTA_ilr_1 </span>
<span class="r-out co"><span class="r-pr">#></span> 95.5662 -2.9048 -3.8130 -4.1600 -4.1486 0.1341 </span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_2 f_DMTA_ilr_3 </span>
<span class="r-out co"><span class="r-pr">#></span> 0.1385 -1.6700 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Fixed degradation parameter values:</span>
<span class="r-out co"><span class="r-pr">#></span> None</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Starting values for random effects (square root of initial entries in omega):</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 log_k_DMTA log_k_M23 log_k_M27 log_k_M31 f_DMTA_ilr_1</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 4.802 0.0000 0.0000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_DMTA 0.000 0.9834 0.0000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M23 0.000 0.0000 0.6983 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M27 0.000 0.0000 0.0000 1.028 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M31 0.000 0.0000 0.0000 0.000 0.9841 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_1 0.000 0.0000 0.0000 0.000 0.0000 0.7185</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_2 0.000 0.0000 0.0000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_3 0.000 0.0000 0.0000 0.000 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_2 f_DMTA_ilr_3</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_DMTA 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M23 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M27 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M31 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_1 0.0000 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_2 0.7378 0.0000</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_3 0.0000 0.4451</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Starting values for error model parameters:</span>
<span class="r-out co"><span class="r-pr">#></span> a.1 b.1 </span>
<span class="r-out co"><span class="r-pr">#></span> 1 1 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Results:</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Likelihood computed by importance sampling</span>
<span class="r-out co"><span class="r-pr">#></span> AIC BIC logLik</span>
<span class="r-out co"><span class="r-pr">#></span> 2276 2273 -1120</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Optimised parameters:</span>
<span class="r-out co"><span class="r-pr">#></span> est. lower upper</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 88.4862 84.1127 92.8598</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_DMTA -3.0512 -3.5674 -2.5351</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M23 -4.0576 -4.9013 -3.2139</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M27 -3.8584 -4.2572 -3.4595</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M31 -3.9779 -4.4844 -3.4714</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_1 0.1264 -0.2186 0.4714</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_2 0.1509 -0.2547 0.5565</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_3 -1.3891 -1.6962 -1.0819</span>
<span class="r-out co"><span class="r-pr">#></span> a.1 0.9196 0.8231 1.0161</span>
<span class="r-out co"><span class="r-pr">#></span> b.1 0.1377 0.1203 0.1551</span>
<span class="r-out co"><span class="r-pr">#></span> SD.DMTA_0 3.5956 -0.8154 8.0066</span>
<span class="r-out co"><span class="r-pr">#></span> SD.log_k_DMTA 0.6437 0.2784 1.0091</span>
<span class="r-out co"><span class="r-pr">#></span> SD.log_k_M23 0.9929 0.3719 1.6139</span>
<span class="r-out co"><span class="r-pr">#></span> SD.log_k_M27 0.4530 0.1522 0.7537</span>
<span class="r-out co"><span class="r-pr">#></span> SD.log_k_M31 0.5773 0.1952 0.9595</span>
<span class="r-out co"><span class="r-pr">#></span> SD.f_DMTA_ilr_1 0.4063 0.1505 0.6621</span>
<span class="r-out co"><span class="r-pr">#></span> SD.f_DMTA_ilr_2 0.4800 0.1817 0.7783</span>
<span class="r-out co"><span class="r-pr">#></span> SD.f_DMTA_ilr_3 0.3582 0.1350 0.5814</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Correlation: </span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 l__DMTA lg__M23 lg__M27 lg__M31 f_DMTA__1 f_DMTA__2</span>
<span class="r-out co"><span class="r-pr">#></span> log_k_DMTA 0.0306 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M23 -0.0234 -0.0032 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M27 -0.0380 -0.0049 0.0041 </span>
<span class="r-out co"><span class="r-pr">#></span> log_k_M31 -0.0247 -0.0031 0.0022 0.0817 </span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_1 -0.0046 -0.0006 0.0425 -0.0438 0.0319 </span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_2 -0.0008 -0.0002 0.0216 -0.0267 -0.0890 -0.0349 </span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_ilr_3 -0.1805 -0.0136 0.0434 0.0791 0.0390 -0.0061 0.0053 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Random effects:</span>
<span class="r-out co"><span class="r-pr">#></span> est. lower upper</span>
<span class="r-out co"><span class="r-pr">#></span> SD.DMTA_0 3.5956 -0.8154 8.0066</span>
<span class="r-out co"><span class="r-pr">#></span> SD.log_k_DMTA 0.6437 0.2784 1.0091</span>
<span class="r-out co"><span class="r-pr">#></span> SD.log_k_M23 0.9929 0.3719 1.6139</span>
<span class="r-out co"><span class="r-pr">#></span> SD.log_k_M27 0.4530 0.1522 0.7537</span>
<span class="r-out co"><span class="r-pr">#></span> SD.log_k_M31 0.5773 0.1952 0.9595</span>
<span class="r-out co"><span class="r-pr">#></span> SD.f_DMTA_ilr_1 0.4063 0.1505 0.6621</span>
<span class="r-out co"><span class="r-pr">#></span> SD.f_DMTA_ilr_2 0.4800 0.1817 0.7783</span>
<span class="r-out co"><span class="r-pr">#></span> SD.f_DMTA_ilr_3 0.3582 0.1350 0.5814</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Variance model:</span>
<span class="r-out co"><span class="r-pr">#></span> est. lower upper</span>
<span class="r-out co"><span class="r-pr">#></span> a.1 0.9196 0.8231 1.0161</span>
<span class="r-out co"><span class="r-pr">#></span> b.1 0.1377 0.1203 0.1551</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Backtransformed parameters:</span>
<span class="r-out co"><span class="r-pr">#></span> est. lower upper</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_0 88.48621 84.112654 92.85977</span>
<span class="r-out co"><span class="r-pr">#></span> k_DMTA 0.04730 0.028230 0.07926</span>
<span class="r-out co"><span class="r-pr">#></span> k_M23 0.01729 0.007437 0.04020</span>
<span class="r-out co"><span class="r-pr">#></span> k_M27 0.02110 0.014162 0.03144</span>
<span class="r-out co"><span class="r-pr">#></span> k_M31 0.01872 0.011283 0.03107</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M23 0.14551 NA NA</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M27 0.12169 NA NA</span>
<span class="r-out co"><span class="r-pr">#></span> f_DMTA_to_M31 0.11062 NA NA</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Resulting formation fractions:</span>
<span class="r-out co"><span class="r-pr">#></span> ff</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_M23 0.1455</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_M27 0.1217</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_M31 0.1106</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA_sink 0.6222</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Estimated disappearance times:</span>
<span class="r-out co"><span class="r-pr">#></span> DT50 DT90</span>
<span class="r-out co"><span class="r-pr">#></span> DMTA 14.65 48.68</span>
<span class="r-out co"><span class="r-pr">#></span> M23 40.09 133.17</span>
<span class="r-out co"><span class="r-pr">#></span> M27 32.85 109.11</span>
<span class="r-out co"><span class="r-pr">#></span> M31 37.02 122.97</span>
<span class="r-in"><span><span class="co"># As the confidence interval for the random effects of DMTA_0</span></span></span>
<span class="r-in"><span><span class="co"># includes zero, we could try an alternative model without</span></span></span>
<span class="r-in"><span><span class="co"># such random effects</span></span></span>
<span class="r-in"><span><span class="co"># f_dmta_saem_tc_2 <- saem(dmta_sfo_sfo3p_tc,</span></span></span>
<span class="r-in"><span><span class="co"># covariance.model = diag(c(0, rep(1, 7))))</span></span></span>
<span class="r-in"><span><span class="co"># saemix::plot(f_dmta_saem_tc_2$so, plot.type = "convergence")</span></span></span>
<span class="r-in"><span><span class="co"># This does not perform better judged by AIC and BIC</span></span></span>
<span class="r-in"><span><span class="co"># saemix::compare.saemix(f_dmta_saem_tc$so, f_dmta_saem_tc_2$so)</span></span></span>
<span class="r-in"><span><span class="co"># }</span></span></span>
</code></pre></div>
</div>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top"><h2 data-toc-skip>Contents</h2>
</nav></div>
</div>
<footer><div class="copyright">
<p></p><p>Developed by Johannes Ranke.</p>
</div>
<div class="pkgdown">
<p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>
</div>
</footer></div>
</body></html>
|