1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><meta name="description" content="This is a generic function with a method currently only defined for mkinfit
objects. It fits an anova model to the data contained in the object and
compares the likelihoods using the likelihood ratio test
lrtest.default from the lmtest package."><title>Lack-of-fit test for models fitted to data with replicates — loftest • mkin</title><script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><link href="../deps/bootstrap-5.2.2/bootstrap.min.css" rel="stylesheet"><script src="../deps/bootstrap-5.2.2/bootstrap.bundle.min.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- bootstrap-toc --><script src="https://cdn.jsdelivr.net/gh/afeld/bootstrap-toc@v1.0.1/dist/bootstrap-toc.min.js" integrity="sha256-4veVQbu7//Lk5TSmc7YV48MxtMy98e26cf5MrgZYnwo=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- search --><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- pkgdown --><script src="../pkgdown.js"></script><meta property="og:title" content="Lack-of-fit test for models fitted to data with replicates — loftest"><meta property="og:description" content="This is a generic function with a method currently only defined for mkinfit
objects. It fits an anova model to the data contained in the object and
compares the likelihoods using the likelihood ratio test
lrtest.default from the lmtest package."><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]--></head><body>
<a href="#main" class="visually-hidden-focusable">Skip to contents</a>
<nav class="navbar fixed-top navbar-default navbar-expand-lg bg-light"><div class="container">
<a class="navbar-brand me-2" href="../index.html">mkin</a>
<small class="nav-text text-default me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="Released version">1.2.6</small>
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar" class="collapse navbar-collapse ms-3">
<ul class="navbar-nav me-auto"><li class="active nav-item">
<a class="nav-link" href="../reference/index.html">Reference</a>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown" role="button" aria-expanded="false" aria-haspopup="true" id="dropdown-articles">Articles</a>
<div class="dropdown-menu" aria-labelledby="dropdown-articles">
<a class="dropdown-item" href="../articles/mkin.html">Introduction to mkin</a>
<div class="dropdown-divider"></div>
<h6 class="dropdown-header" data-toc-skip>Example evaluations with (generalised) nonlinear least squares</h6>
<a class="dropdown-item" href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
<a class="dropdown-item" href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
<a class="dropdown-item" href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
<div class="dropdown-divider"></div>
<h6 class="dropdown-header" data-toc-skip>Example evaluations with hierarchical models (nonlinear mixed-effects models)</h6>
<a class="dropdown-item" href="../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>
<a class="dropdown-item" href="../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>
<a class="dropdown-item" href="../articles/prebuilt/2023_mesotrione_parent.html">Testing covariate modelling in hierarchical parent degradation kinetics with residue data on mesotrione</a>
<a class="dropdown-item" href="../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>
<a class="dropdown-item" href="../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>
<a class="dropdown-item" href="../articles/web_only/multistart.html">Short demo of the multistart method</a>
<div class="dropdown-divider"></div>
<h6 class="dropdown-header" data-toc-skip>Performance</h6>
<a class="dropdown-item" href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
<a class="dropdown-item" href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a>
<a class="dropdown-item" href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>
<div class="dropdown-divider"></div>
<h6 class="dropdown-header" data-toc-skip>Miscellaneous</h6>
<a class="dropdown-item" href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
<a class="dropdown-item" href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
</div>
</li>
<li class="nav-item">
<a class="nav-link" href="../news/index.html">News</a>
</li>
</ul><form class="form-inline my-2 my-lg-0" role="search">
<input type="search" class="form-control me-sm-2" aria-label="Toggle navigation" name="search-input" data-search-index="../search.json" id="search-input" placeholder="Search for" autocomplete="off"></form>
<ul class="navbar-nav"><li class="nav-item">
<a class="external-link nav-link" href="https://github.com/jranke/mkin/" aria-label="github">
<span class="fab fa fab fa-github fa-lg"></span>
</a>
</li>
</ul></div>
</div>
</nav><div class="container template-reference-topic">
<div class="row">
<main id="main" class="col-md-9"><div class="page-header">
<img src="" class="logo" alt=""><h1>Lack-of-fit test for models fitted to data with replicates</h1>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/R/loftest.R" class="external-link"><code>R/loftest.R</code></a></small>
<div class="d-none name"><code>loftest.Rd</code></div>
</div>
<div class="ref-description section level2">
<p>This is a generic function with a method currently only defined for mkinfit
objects. It fits an anova model to the data contained in the object and
compares the likelihoods using the likelihood ratio test
<code><a href="https://rdrr.io/pkg/lmtest/man/lrtest.html" class="external-link">lrtest.default</a></code> from the lmtest package.</p>
</div>
<div class="section level2">
<h2 id="ref-usage">Usage<a class="anchor" aria-label="anchor" href="#ref-usage"></a></h2>
<div class="sourceCode"><pre class="sourceCode r"><code><span><span class="fu">loftest</span><span class="op">(</span><span class="va">object</span>, <span class="va">...</span><span class="op">)</span></span>
<span></span>
<span><span class="co"># S3 method for mkinfit</span></span>
<span><span class="fu">loftest</span><span class="op">(</span><span class="va">object</span>, <span class="va">...</span><span class="op">)</span></span></code></pre></div>
</div>
<div class="section level2">
<h2 id="arguments">Arguments<a class="anchor" aria-label="anchor" href="#arguments"></a></h2>
<dl><dt>object</dt>
<dd><p>A model object with a defined loftest method</p></dd>
<dt>...</dt>
<dd><p>Not used</p></dd>
</dl></div>
<div class="section level2">
<h2 id="details">Details<a class="anchor" aria-label="anchor" href="#details"></a></h2>
<p>The anova model is interpreted as the simplest form of an mkinfit model,
assuming only a constant variance about the means, but not enforcing any
structure of the means, so we have one model parameter for every mean
of replicate samples.</p>
</div>
<div class="section level2">
<h2 id="see-also">See also<a class="anchor" aria-label="anchor" href="#see-also"></a></h2>
<div class="dont-index"><p>lrtest</p></div>
</div>
<div class="section level2">
<h2 id="ref-examples">Examples<a class="anchor" aria-label="anchor" href="#ref-examples"></a></h2>
<div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span><span class="co"># \dontrun{</span></span></span>
<span class="r-in"><span><span class="va">test_data</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/subset.html" class="external-link">subset</a></span><span class="op">(</span><span class="va">synthetic_data_for_UBA_2014</span><span class="op">[[</span><span class="fl">12</span><span class="op">]</span><span class="op">]</span><span class="op">$</span><span class="va">data</span>, <span class="va">name</span> <span class="op">==</span> <span class="st">"parent"</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="va">sfo_fit</span> <span class="op"><-</span> <span class="fu"><a href="mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">test_data</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="fu"><a href="plot.mkinfit.html">plot_res</a></span><span class="op">(</span><span class="va">sfo_fit</span><span class="op">)</span> <span class="co"># We see a clear pattern in the residuals</span></span></span>
<span class="r-plt img"><img src="loftest-1.png" alt="" width="700" height="433"></span>
<span class="r-in"><span><span class="fu">loftest</span><span class="op">(</span><span class="va">sfo_fit</span><span class="op">)</span> <span class="co"># We have a clear lack of fit</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> Likelihood ratio test</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Model 1: ANOVA with error model const</span>
<span class="r-out co"><span class="r-pr">#></span> Model 2: SFO with error model const</span>
<span class="r-out co"><span class="r-pr">#></span> #Df LogLik Df Chisq Pr(>Chisq) </span>
<span class="r-out co"><span class="r-pr">#></span> 1 10 -40.710 </span>
<span class="r-out co"><span class="r-pr">#></span> 2 3 -63.954 -7 46.487 7.027e-08 ***</span>
<span class="r-out co"><span class="r-pr">#></span> ---</span>
<span class="r-out co"><span class="r-pr">#></span> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</span>
<span class="r-in"><span><span class="co">#</span></span></span>
<span class="r-in"><span><span class="co"># We try a different model (the one that was used to generate the data)</span></span></span>
<span class="r-in"><span><span class="va">dfop_fit</span> <span class="op"><-</span> <span class="fu"><a href="mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="va">test_data</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="fu"><a href="plot.mkinfit.html">plot_res</a></span><span class="op">(</span><span class="va">dfop_fit</span><span class="op">)</span> <span class="co"># We don't see systematic deviations, but heteroscedastic residuals</span></span></span>
<span class="r-plt img"><img src="loftest-2.png" alt="" width="700" height="433"></span>
<span class="r-in"><span><span class="co"># therefore we should consider adapting the error model, although we have</span></span></span>
<span class="r-in"><span><span class="fu">loftest</span><span class="op">(</span><span class="va">dfop_fit</span><span class="op">)</span> <span class="co"># no lack of fit</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> Likelihood ratio test</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Model 1: ANOVA with error model const</span>
<span class="r-out co"><span class="r-pr">#></span> Model 2: DFOP with error model const</span>
<span class="r-out co"><span class="r-pr">#></span> #Df LogLik Df Chisq Pr(>Chisq)</span>
<span class="r-out co"><span class="r-pr">#></span> 1 10 -40.710 </span>
<span class="r-out co"><span class="r-pr">#></span> 2 5 -42.453 -5 3.485 0.6257</span>
<span class="r-in"><span><span class="co">#</span></span></span>
<span class="r-in"><span><span class="co"># This is the anova model used internally for the comparison</span></span></span>
<span class="r-in"><span><span class="va">test_data_anova</span> <span class="op"><-</span> <span class="va">test_data</span></span></span>
<span class="r-in"><span><span class="va">test_data_anova</span><span class="op">$</span><span class="va">time</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/factor.html" class="external-link">as.factor</a></span><span class="op">(</span><span class="va">test_data_anova</span><span class="op">$</span><span class="va">time</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="va">anova_fit</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/lm.html" class="external-link">lm</a></span><span class="op">(</span><span class="va">value</span> <span class="op">~</span> <span class="va">time</span>, data <span class="op">=</span> <span class="va">test_data_anova</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">anova_fit</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Call:</span>
<span class="r-out co"><span class="r-pr">#></span> lm(formula = value ~ time, data = test_data_anova)</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Residuals:</span>
<span class="r-out co"><span class="r-pr">#></span> Min 1Q Median 3Q Max </span>
<span class="r-out co"><span class="r-pr">#></span> -6.1000 -0.5625 0.0000 0.5625 6.1000 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Coefficients:</span>
<span class="r-out co"><span class="r-pr">#></span> Estimate Std. Error t value Pr(>|t|) </span>
<span class="r-out co"><span class="r-pr">#></span> (Intercept) 103.150 2.323 44.409 7.44e-12 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time1 -19.950 3.285 -6.073 0.000185 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time3 -50.800 3.285 -15.465 8.65e-08 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time7 -68.500 3.285 -20.854 6.28e-09 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time14 -79.750 3.285 -24.278 1.63e-09 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time28 -86.000 3.285 -26.181 8.35e-10 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time60 -94.900 3.285 -28.891 3.48e-10 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time90 -98.500 3.285 -29.986 2.49e-10 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time120 -100.450 3.285 -30.580 2.09e-10 ***</span>
<span class="r-out co"><span class="r-pr">#></span> ---</span>
<span class="r-out co"><span class="r-pr">#></span> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Residual standard error: 3.285 on 9 degrees of freedom</span>
<span class="r-out co"><span class="r-pr">#></span> Multiple R-squared: 0.9953, Adjusted R-squared: 0.9912 </span>
<span class="r-out co"><span class="r-pr">#></span> F-statistic: 240.5 on 8 and 9 DF, p-value: 1.417e-09</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/stats/logLik.html" class="external-link">logLik</a></span><span class="op">(</span><span class="va">anova_fit</span><span class="op">)</span> <span class="co"># We get the same likelihood and degrees of freedom</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> 'log Lik.' -40.71015 (df=10)</span>
<span class="r-in"><span><span class="co">#</span></span></span>
<span class="r-in"><span><span class="va">test_data_2</span> <span class="op"><-</span> <span class="va">synthetic_data_for_UBA_2014</span><span class="op">[[</span><span class="fl">12</span><span class="op">]</span><span class="op">]</span><span class="op">$</span><span class="va">data</span></span></span>
<span class="r-in"><span><span class="va">m_synth_SFO_lin</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span>parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span>, to <span class="op">=</span> <span class="st">"M1"</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> M1 <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span>, to <span class="op">=</span> <span class="st">"M2"</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> M2 <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span><span class="op">)</span>, use_of_ff <span class="op">=</span> <span class="st">"max"</span><span class="op">)</span></span></span>
<span class="r-msg co"><span class="r-pr">#></span> Temporary DLL for differentials generated and loaded</span>
<span class="r-in"><span><span class="va">sfo_lin_fit</span> <span class="op"><-</span> <span class="fu"><a href="mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="va">m_synth_SFO_lin</span>, <span class="va">test_data_2</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="fu"><a href="plot.mkinfit.html">plot_res</a></span><span class="op">(</span><span class="va">sfo_lin_fit</span><span class="op">)</span> <span class="co"># not a good model, we try parallel formation</span></span></span>
<span class="r-plt img"><img src="loftest-3.png" alt="" width="700" height="433"></span>
<span class="r-in"><span><span class="fu">loftest</span><span class="op">(</span><span class="va">sfo_lin_fit</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> Likelihood ratio test</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Model 1: ANOVA with error model const</span>
<span class="r-out co"><span class="r-pr">#></span> Model 2: m_synth_SFO_lin with error model const and fixed parameter(s) M1_0, M2_0</span>
<span class="r-out co"><span class="r-pr">#></span> #Df LogLik Df Chisq Pr(>Chisq) </span>
<span class="r-out co"><span class="r-pr">#></span> 1 28 -93.606 </span>
<span class="r-out co"><span class="r-pr">#></span> 2 7 -171.927 -21 156.64 < 2.2e-16 ***</span>
<span class="r-out co"><span class="r-pr">#></span> ---</span>
<span class="r-out co"><span class="r-pr">#></span> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</span>
<span class="r-in"><span><span class="co">#</span></span></span>
<span class="r-in"><span><span class="va">m_synth_SFO_par</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span>parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span>, to <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M1"</span>, <span class="st">"M2"</span><span class="op">)</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> M1 <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> M2 <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span><span class="op">)</span>, use_of_ff <span class="op">=</span> <span class="st">"max"</span><span class="op">)</span></span></span>
<span class="r-msg co"><span class="r-pr">#></span> Temporary DLL for differentials generated and loaded</span>
<span class="r-in"><span><span class="va">sfo_par_fit</span> <span class="op"><-</span> <span class="fu"><a href="mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="va">m_synth_SFO_par</span>, <span class="va">test_data_2</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="fu"><a href="plot.mkinfit.html">plot_res</a></span><span class="op">(</span><span class="va">sfo_par_fit</span><span class="op">)</span> <span class="co"># much better for metabolites</span></span></span>
<span class="r-plt img"><img src="loftest-4.png" alt="" width="700" height="433"></span>
<span class="r-in"><span><span class="fu">loftest</span><span class="op">(</span><span class="va">sfo_par_fit</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> Likelihood ratio test</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Model 1: ANOVA with error model const</span>
<span class="r-out co"><span class="r-pr">#></span> Model 2: m_synth_SFO_par with error model const and fixed parameter(s) M1_0, M2_0</span>
<span class="r-out co"><span class="r-pr">#></span> #Df LogLik Df Chisq Pr(>Chisq) </span>
<span class="r-out co"><span class="r-pr">#></span> 1 28 -93.606 </span>
<span class="r-out co"><span class="r-pr">#></span> 2 7 -156.331 -21 125.45 < 2.2e-16 ***</span>
<span class="r-out co"><span class="r-pr">#></span> ---</span>
<span class="r-out co"><span class="r-pr">#></span> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</span>
<span class="r-in"><span><span class="co">#</span></span></span>
<span class="r-in"><span><span class="va">m_synth_DFOP_par</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span>parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"DFOP"</span>, to <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"M1"</span>, <span class="st">"M2"</span><span class="op">)</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> M1 <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> M2 <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>type <span class="op">=</span> <span class="st">"SFO"</span><span class="op">)</span>, use_of_ff <span class="op">=</span> <span class="st">"max"</span><span class="op">)</span></span></span>
<span class="r-msg co"><span class="r-pr">#></span> Temporary DLL for differentials generated and loaded</span>
<span class="r-in"><span><span class="va">dfop_par_fit</span> <span class="op"><-</span> <span class="fu"><a href="mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="va">m_synth_DFOP_par</span>, <span class="va">test_data_2</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="fu"><a href="plot.mkinfit.html">plot_res</a></span><span class="op">(</span><span class="va">dfop_par_fit</span><span class="op">)</span> <span class="co"># No visual lack of fit</span></span></span>
<span class="r-plt img"><img src="loftest-5.png" alt="" width="700" height="433"></span>
<span class="r-in"><span><span class="fu">loftest</span><span class="op">(</span><span class="va">dfop_par_fit</span><span class="op">)</span> <span class="co"># no lack of fit found by the test</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> Likelihood ratio test</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Model 1: ANOVA with error model const</span>
<span class="r-out co"><span class="r-pr">#></span> Model 2: m_synth_DFOP_par with error model const and fixed parameter(s) M1_0, M2_0</span>
<span class="r-out co"><span class="r-pr">#></span> #Df LogLik Df Chisq Pr(>Chisq)</span>
<span class="r-out co"><span class="r-pr">#></span> 1 28 -93.606 </span>
<span class="r-out co"><span class="r-pr">#></span> 2 9 -102.763 -19 18.313 0.5016</span>
<span class="r-in"><span><span class="co">#</span></span></span>
<span class="r-in"><span><span class="co"># The anova model used for comparison in the case of transformation products</span></span></span>
<span class="r-in"><span><span class="va">test_data_anova_2</span> <span class="op"><-</span> <span class="va">dfop_par_fit</span><span class="op">$</span><span class="va">data</span></span></span>
<span class="r-in"><span><span class="va">test_data_anova_2</span><span class="op">$</span><span class="va">variable</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/factor.html" class="external-link">as.factor</a></span><span class="op">(</span><span class="va">test_data_anova_2</span><span class="op">$</span><span class="va">variable</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="va">test_data_anova_2</span><span class="op">$</span><span class="va">time</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/factor.html" class="external-link">as.factor</a></span><span class="op">(</span><span class="va">test_data_anova_2</span><span class="op">$</span><span class="va">time</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="va">anova_fit_2</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/lm.html" class="external-link">lm</a></span><span class="op">(</span><span class="va">observed</span> <span class="op">~</span> <span class="va">time</span><span class="op">:</span><span class="va">variable</span> <span class="op">-</span> <span class="fl">1</span>, data <span class="op">=</span> <span class="va">test_data_anova_2</span><span class="op">)</span></span></span>
<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">anova_fit_2</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Call:</span>
<span class="r-out co"><span class="r-pr">#></span> lm(formula = observed ~ time:variable - 1, data = test_data_anova_2)</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Residuals:</span>
<span class="r-out co"><span class="r-pr">#></span> Min 1Q Median 3Q Max </span>
<span class="r-out co"><span class="r-pr">#></span> -6.1000 -0.5875 0.0000 0.5875 6.1000 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Coefficients: (2 not defined because of singularities)</span>
<span class="r-out co"><span class="r-pr">#></span> Estimate Std. Error t value Pr(>|t|) </span>
<span class="r-out co"><span class="r-pr">#></span> time0:variableparent 103.150 1.573 65.562 < 2e-16 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time1:variableparent 83.200 1.573 52.882 < 2e-16 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time3:variableparent 52.350 1.573 33.274 < 2e-16 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time7:variableparent 34.650 1.573 22.024 < 2e-16 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time14:variableparent 23.400 1.573 14.873 6.35e-14 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time28:variableparent 17.150 1.573 10.901 5.47e-11 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time60:variableparent 8.250 1.573 5.244 1.99e-05 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time90:variableparent 4.650 1.573 2.956 0.006717 ** </span>
<span class="r-out co"><span class="r-pr">#></span> time120:variableparent 2.700 1.573 1.716 0.098507 . </span>
<span class="r-out co"><span class="r-pr">#></span> time0:variableM1 NA NA NA NA </span>
<span class="r-out co"><span class="r-pr">#></span> time1:variableM1 11.850 1.573 7.532 6.93e-08 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time3:variableM1 22.700 1.573 14.428 1.26e-13 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time7:variableM1 33.050 1.573 21.007 < 2e-16 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time14:variableM1 31.250 1.573 19.863 < 2e-16 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time28:variableM1 18.900 1.573 12.013 7.02e-12 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time60:variableM1 7.550 1.573 4.799 6.28e-05 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time90:variableM1 3.850 1.573 2.447 0.021772 * </span>
<span class="r-out co"><span class="r-pr">#></span> time120:variableM1 2.050 1.573 1.303 0.204454 </span>
<span class="r-out co"><span class="r-pr">#></span> time0:variableM2 NA NA NA NA </span>
<span class="r-out co"><span class="r-pr">#></span> time1:variableM2 6.700 1.573 4.259 0.000254 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time3:variableM2 16.750 1.573 10.646 8.93e-11 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time7:variableM2 25.800 1.573 16.399 6.89e-15 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time14:variableM2 28.600 1.573 18.178 6.35e-16 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time28:variableM2 25.400 1.573 16.144 9.85e-15 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time60:variableM2 21.600 1.573 13.729 3.81e-13 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time90:variableM2 17.800 1.573 11.314 2.51e-11 ***</span>
<span class="r-out co"><span class="r-pr">#></span> time120:variableM2 14.100 1.573 8.962 2.79e-09 ***</span>
<span class="r-out co"><span class="r-pr">#></span> ---</span>
<span class="r-out co"><span class="r-pr">#></span> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Residual standard error: 2.225 on 25 degrees of freedom</span>
<span class="r-out co"><span class="r-pr">#></span> Multiple R-squared: 0.9979, Adjusted R-squared: 0.9957 </span>
<span class="r-out co"><span class="r-pr">#></span> F-statistic: 469.2 on 25 and 25 DF, p-value: < 2.2e-16</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-in"><span><span class="co"># }</span></span></span>
</code></pre></div>
</div>
</main><aside class="col-md-3"><nav id="toc"><h2>On this page</h2>
</nav></aside></div>
<footer><div class="pkgdown-footer-left">
<p></p><p>Developed by Johannes Ranke.</p>
</div>
<div class="pkgdown-footer-right">
<p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>
</div>
</footer></div>
</body></html>
|