1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
|
<!-- Generated by pkgdown: do not edit by hand -->
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Fit a kinetic model to data with one or more state variables — mkinfit • mkin</title>
<!-- jquery -->
<script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha384-nrOSfDHtoPMzJHjVTdCopGqIqeYETSXhZDFyniQ8ZHcVy08QesyHcnOUpMpqnmWq" crossorigin="anonymous"></script>
<!-- Bootstrap -->
<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<!-- Font Awesome icons -->
<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous">
<!-- clipboard.js -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/1.7.1/clipboard.min.js" integrity="sha384-cV+rhyOuRHc9Ub/91rihWcGmMmCXDeksTtCihMupQHSsi8GIIRDG0ThDc3HGQFJ3" crossorigin="anonymous"></script>
<!-- sticky kit -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/sticky-kit/1.1.3/sticky-kit.min.js" integrity="sha256-c4Rlo1ZozqTPE2RLuvbusY3+SU1pQaJC0TjuhygMipw=" crossorigin="anonymous"></script>
<!-- pkgdown -->
<link href="../pkgdown.css" rel="stylesheet">
<script src="../pkgdown.js"></script>
<meta property="og:title" content="Fit a kinetic model to data with one or more state variables — mkinfit" />
<meta property="og:description" content="This function uses the Flexible Modelling Environment package
FME to create a function calculating the model cost, i.e. the
deviation between the kinetic model and the observed data. This model cost is
then minimised using the Port algorithm nlminb,
using the specified initial or fixed parameters and starting values.
Per default, parameters in the kinetic models are internally transformed in order
to better satisfy the assumption of a normal distribution of their estimators.
In each step of the optimsation, the kinetic model is solved using the
function mkinpredict. The variance of the residuals for each
observed variable can optionally be iteratively reweighted until convergence
using the argument reweight.method = "obs"." />
<meta name="twitter:card" content="summary" />
<!-- mathjax -->
<script src='https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script>
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<div class="container template-reference-topic">
<header>
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
<span class="label label-default" data-toggle="tooltip" data-placement="bottom" title="Released package">0.9.47.6</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="../reference/index.html">Functions and data</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Articles
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="../articles/mkin.html">Introduction to mkin</a>
</li>
<li>
<a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
</li>
<li>
<a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
</li>
<li>
<a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
</li>
<li>
<a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
</li>
<li>
<a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
</li>
</ul>
</li>
<li>
<a href="../news/index.html">News</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
</header>
<div class="row">
<div class="col-md-9 contents">
<div class="page-header">
<h1>Fit a kinetic model to data with one or more state variables</h1>
<div class="hidden name"><code>mkinfit.Rd</code></div>
</div>
<div class="ref-description">
<p>This function uses the Flexible Modelling Environment package
<code>FME</code> to create a function calculating the model cost, i.e. the
deviation between the kinetic model and the observed data. This model cost is
then minimised using the Port algorithm <code>nlminb</code>,
using the specified initial or fixed parameters and starting values.
Per default, parameters in the kinetic models are internally transformed in order
to better satisfy the assumption of a normal distribution of their estimators.
In each step of the optimsation, the kinetic model is solved using the
function <code><a href='mkinpredict.html'>mkinpredict</a></code>. The variance of the residuals for each
observed variable can optionally be iteratively reweighted until convergence
using the argument <code>reweight.method = "obs"</code>.</p>
</div>
<pre class="usage"><span class='fu'>mkinfit</span>(<span class='no'>mkinmod</span>, <span class='no'>observed</span>,
<span class='kw'>parms.ini</span> <span class='kw'>=</span> <span class='st'>"auto"</span>,
<span class='kw'>state.ini</span> <span class='kw'>=</span> <span class='st'>"auto"</span>,
<span class='kw'>fixed_parms</span> <span class='kw'>=</span> <span class='kw'>NULL</span>, <span class='kw'>fixed_initials</span> <span class='kw'>=</span> <span class='fu'>names</span>(<span class='no'>mkinmod</span>$<span class='no'>diffs</span>)[-<span class='fl'>1</span>],
<span class='kw'>from_max_mean</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>,
<span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"auto"</span>, <span class='st'>"analytical"</span>, <span class='st'>"eigen"</span>, <span class='st'>"deSolve"</span>),
<span class='kw'>method.ode</span> <span class='kw'>=</span> <span class='st'>"lsoda"</span>,
<span class='kw'>use_compiled</span> <span class='kw'>=</span> <span class='st'>"auto"</span>,
<span class='kw'>method.modFit</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"Port"</span>, <span class='st'>"Marq"</span>, <span class='st'>"SANN"</span>, <span class='st'>"Nelder-Mead"</span>, <span class='st'>"BFGS"</span>, <span class='st'>"CG"</span>, <span class='st'>"L-BFGS-B"</span>),
<span class='kw'>maxit.modFit</span> <span class='kw'>=</span> <span class='st'>"auto"</span>,
<span class='kw'>control.modFit</span> <span class='kw'>=</span> <span class='fu'>list</span>(),
<span class='kw'>transform_rates</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>,
<span class='kw'>transform_fractions</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>,
<span class='kw'>plot</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, <span class='kw'>err</span> <span class='kw'>=</span> <span class='kw'>NULL</span>,
<span class='kw'>weight</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"none"</span>, <span class='st'>"manual"</span>, <span class='st'>"std"</span>, <span class='st'>"mean"</span>, <span class='st'>"tc"</span>),
<span class='kw'>tc</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='kw'>sigma_low</span> <span class='kw'>=</span> <span class='fl'>0.5</span>, <span class='kw'>rsd_high</span> <span class='kw'>=</span> <span class='fl'>0.07</span>),
<span class='kw'>scaleVar</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>,
<span class='kw'>atol</span> <span class='kw'>=</span> <span class='fl'>1e-8</span>, <span class='kw'>rtol</span> <span class='kw'>=</span> <span class='fl'>1e-10</span>, <span class='kw'>n.outtimes</span> <span class='kw'>=</span> <span class='fl'>100</span>,
<span class='kw'>reweight.method</span> <span class='kw'>=</span> <span class='kw'>NULL</span>,
<span class='kw'>reweight.tol</span> <span class='kw'>=</span> <span class='fl'>1e-8</span>, <span class='kw'>reweight.max.iter</span> <span class='kw'>=</span> <span class='fl'>10</span>,
<span class='kw'>trace_parms</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, <span class='no'>...</span>)</pre>
<h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
<table class="ref-arguments">
<colgroup><col class="name" /><col class="desc" /></colgroup>
<tr>
<th>mkinmod</th>
<td><p>A list of class <code><a href='mkinmod.html'>mkinmod</a></code>, containing the kinetic model to be
fitted to the data, or one of the shorthand names ("SFO", "FOMC", "DFOP",
"HS", "SFORB"). If a shorthand name is given, a parent only degradation
model is generated for the variable with the highest value in
<code>observed</code>.</p></td>
</tr>
<tr>
<th>observed</th>
<td><p>The observed data. It has to be in the long format as described in
<code>modFit</code>, i.e. the first column called "name" must contain the
name of the observed variable for each data point. The second column must
contain the times of observation, named "time". The third column must be
named "value" and contain the observed values. Optionally, a further column
can contain weights for each data point. Its name must be passed as a
further argument named <code>err</code> which is then passed on to
<code>modFit</code>.</p></td>
</tr>
<tr>
<th>parms.ini</th>
<td><p>A named vector of initial values for the parameters, including parameters
to be optimised and potentially also fixed parameters as indicated by
<code>fixed_parms</code>. If set to "auto", initial values for rate constants
are set to default values. Using parameter names that are not in the model
gives an error.</p>
<p>It is possible to only specify a subset of the parameters that the model
needs. You can use the parameter lists "bparms.ode" from a previously
fitted model, which contains the differential equation parameters from this
model. This works nicely if the models are nested. An example is given
below.</p></td>
</tr>
<tr>
<th>state.ini</th>
<td><p>A named vector of initial values for the state variables of the model. In
case the observed variables are represented by more than one model
variable, the names will differ from the names of the observed variables
(see <code>map</code> component of <code><a href='mkinmod.html'>mkinmod</a></code>). The default is to set
the initial value of the first model variable to the mean of the time zero
values for the variable with the maximum observed value, and all others to 0.
If this variable has no time zero observations, its initial value is set to 100.</p></td>
</tr>
<tr>
<th>fixed_parms</th>
<td><p>The names of parameters that should not be optimised but rather kept at the
values specified in <code>parms.ini</code>.</p></td>
</tr>
<tr>
<th>fixed_initials</th>
<td><p>The names of model variables for which the initial state at time 0 should
be excluded from the optimisation. Defaults to all state variables except
for the first one.</p></td>
</tr>
<tr>
<th>from_max_mean</th>
<td><p>If this is set to TRUE, and the model has only one observed variable, then
data before the time of the maximum observed value (after averaging for each
sampling time) are discarded, and this time is subtracted from all
remaining time values, so the time of the maximum observed mean value is
the new time zero.</p></td>
</tr>
<tr>
<th>solution_type</th>
<td><p>If set to "eigen", the solution of the system of differential equations is
based on the spectral decomposition of the coefficient matrix in cases that
this is possible. If set to "deSolve", a numerical ode solver from package
<code>deSolve</code> is used. If set to "analytical", an analytical
solution of the model is used. This is only implemented for simple
degradation experiments with only one state variable, i.e. with no
metabolites. The default is "auto", which uses "analytical" if possible,
otherwise "eigen" if the model can be expressed using eigenvalues and
eigenvectors, and finally "deSolve" for the remaining models (time
dependence of degradation rates and metabolites). This argument is passed
on to the helper function <code><a href='mkinpredict.html'>mkinpredict</a></code>.</p></td>
</tr>
<tr>
<th>method.ode</th>
<td><p>The solution method passed via <code><a href='mkinpredict.html'>mkinpredict</a></code> to
<code>ode</code> in case the solution type is "deSolve". The default
"lsoda" is performant, but sometimes fails to converge.</p></td>
</tr>
<tr>
<th>use_compiled</th>
<td><p>If set to <code>FALSE</code>, no compiled version of the <code><a href='mkinmod.html'>mkinmod</a></code>
model is used, in the calls to <code><a href='mkinpredict.html'>mkinpredict</a></code> even if
a compiled verion is present.</p></td>
</tr>
<tr>
<th>method.modFit</th>
<td><p>The optimisation method passed to <code>modFit</code>.</p>
<p>In order to optimally deal with problems where local minima occur, the
"Port" algorithm is now used per default as it is less prone to get trapped
in local minima and depends less on starting values for parameters than
the Levenberg Marquardt variant selected by "Marq". However, "Port" needs
more iterations.</p>
<p>The former default "Marq" is the Levenberg Marquardt algorithm
<code>nls.lm</code> from the package <code>minpack.lm</code> and usually needs
the least number of iterations.</p>
<p>The "Pseudo" algorithm is not included because it needs finite parameter bounds
which are currently not supported.</p>
<p>The "Newton" algorithm is not included because its number of iterations
can not be controlled by <code>control.modFit</code> and it does not appear
to provide advantages over the other algorithms.</p></td>
</tr>
<tr>
<th>maxit.modFit</th>
<td><p>Maximum number of iterations in the optimisation. If not "auto", this will
be passed to the method called by <code>modFit</code>, overriding
what may be specified in the next argument <code>control.modFit</code>.</p></td>
</tr>
<tr>
<th>control.modFit</th>
<td><p>Additional arguments passed to the optimisation method used by
<code>modFit</code>.</p></td>
</tr>
<tr>
<th>transform_rates</th>
<td><p>Boolean specifying if kinetic rate constants should be transformed in the
model specification used in the fitting for better compliance with the
assumption of normal distribution of the estimator. If TRUE, also
alpha and beta parameters of the FOMC model are log-transformed, as well
as k1 and k2 rate constants for the DFOP and HS models and the break point
tb of the HS model.
If FALSE, zero is used as a lower bound for the rates in the optimisation.</p></td>
</tr>
<tr>
<th>transform_fractions</th>
<td><p>Boolean specifying if formation fractions constants should be transformed in the
model specification used in the fitting for better compliance with the
assumption of normal distribution of the estimator. The default (TRUE) is
to do transformations. If TRUE, the g parameter of the DFOP and HS
models are also transformed, as they can also be seen as compositional
data. The transformation used for these transformations is the
<code><a href='ilr.html'>ilr</a></code> transformation.</p></td>
</tr>
<tr>
<th>plot</th>
<td><p>Should the observed values and the numerical solutions be plotted at each
stage of the optimisation?</p></td>
</tr>
<tr>
<th>quiet</th>
<td><p>Suppress printing out the current model cost after each improvement?</p></td>
</tr>
<tr>
<th>err </th>
<td><p>either <code>NULL</code>, or the name of the column with the
<em>error</em> estimates, used to weigh the residuals (see details of
<code>modCost</code>); if <code>NULL</code>, then the residuals are not weighed.</p></td>
</tr>
<tr>
<th>weight</th>
<td><p>only if <code>err</code>=<code>NULL</code>: how to weight the residuals, one of "none",
"std", "mean", see details of <code>modCost</code>, or "tc" for the
two component error model. The option "manual" is available for
the case that <code>err</code>!=<code>NULL</code>, but it is not necessary to specify it.</p></td>
</tr>
<tr>
<th>tc</th>
<td><p>The two components of the error model as used for (initial)
weighting</p></td>
</tr>
<tr>
<th>scaleVar</th>
<td><p>Will be passed to <code>modCost</code>. Default is not to scale Variables
according to the number of observations.</p></td>
</tr>
<tr>
<th>atol</th>
<td><p>Absolute error tolerance, passed to <code>ode</code>. Default is 1e-8,
lower than in <code>lsoda</code>.</p></td>
</tr>
<tr>
<th>rtol</th>
<td><p>Absolute error tolerance, passed to <code>ode</code>. Default is 1e-10,
much lower than in <code>lsoda</code>.</p></td>
</tr>
<tr>
<th>n.outtimes</th>
<td><p>The length of the dataseries that is produced by the model prediction
function <code><a href='mkinpredict.html'>mkinpredict</a></code>. This impacts the accuracy of
the numerical solver if that is used (see <code>solution_type</code> argument.
The default value is 100.</p></td>
</tr>
<tr>
<th>reweight.method</th>
<td><p>The method used for iteratively reweighting residuals, also known
as iteratively reweighted least squares (IRLS). Default is NULL,
i.e. no iterative weighting.
The first reweighting method is called "obs", meaning that each
observed variable is assumed to have its own variance. This variance
is estimated from the fit (mean squared residuals) and used for weighting
the residuals in each iteration until convergence of this estimate up to
<code>reweight.tol</code> or up to the maximum number of iterations
specified by <code>reweight.max.iter</code>.
The second reweighting method is called "tc" (two-component error model).
When using this method, the two components of an error model similar to
the one described by
Rocke and Lorenzato (1995) are estimated from the fit and the resulting
variances are used for weighting the residuals in each iteration until
convergence of these components or up to the maximum number of iterations
specified. Note that this method deviates from the model by Rocke and
Lorenzato, as their model implies that the errors follow a lognormal
distribution for large values, not a normal distribution as assumed by this
method.</p></td>
</tr>
<tr>
<th>reweight.tol</th>
<td><p>Tolerance for convergence criterion for the variance components
in IRLS fits.</p></td>
</tr>
<tr>
<th>reweight.max.iter</th>
<td><p>Maximum iterations in IRLS fits.</p></td>
</tr>
<tr>
<th>trace_parms</th>
<td><p>Should a trace of the parameter values be listed?</p></td>
</tr>
<tr>
<th>…</th>
<td><p>Further arguments that will be passed to <code>modFit</code>.</p></td>
</tr>
</table>
<h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
<p>A list with "mkinfit" and "modFit" in the class attribute.
A summary can be obtained by <code><a href='summary.mkinfit.html'>summary.mkinfit</a></code>.</p>
<h2 class="hasAnchor" id="see-also"><a class="anchor" href="#see-also"></a>See also</h2>
<div class='dont-index'><p>Plotting methods <code><a href='plot.mkinfit.html'>plot.mkinfit</a></code> and
<code><a href='mkinparplot.html'>mkinparplot</a></code>.</p>
<p>Comparisons of models fitted to the same data can be made using <code>AIC</code>
by virtue of the method <code><a href='logLik.mkinfit.html'>logLik.mkinfit</a></code>.</p>
<p>Fitting of several models to several datasets in a single call to
<code><a href='mmkin.html'>mmkin</a></code>.</p></div>
<h2 class="hasAnchor" id="note"><a class="anchor" href="#note"></a>Note</h2>
<p>The implementation of iteratively reweighted least squares is inspired by the
work of the KinGUII team at Bayer Crop Science (Walter Schmitt and Zhenglei
Gao). A similar implemention can also be found in CAKE 2.0, which is the
other GUI derivative of mkin, sponsored by Syngenta.</p>
<h2 class="hasAnchor" id="note"><a class="anchor" href="#note"></a>Note</h2>
<p>When using the "IORE" submodel for metabolites, fitting with
"transform_rates = TRUE" (the default) often leads to failures of the
numerical ODE solver. In this situation it may help to switch off the
internal rate transformation.</p>
<h2 class="hasAnchor" id="source"><a class="anchor" href="#source"></a>Source</h2>
<p>Rocke, David M. und Lorenzato, Stefan (1995) A two-component model for
measurement error in analytical chemistry. Technometrics 37(2), 176-184.</p>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><div class='input'><span class='co'># Use shorthand notation for parent only degradation</span>
<span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='st'>"FOMC"</span>, <span class='no'>FOCUS_2006_C</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
<span class='fu'>summary</span>(<span class='no'>fit</span>)</div><div class='output co'>#> mkin version used for fitting: 0.9.47.6
#> R version used for fitting: 3.5.1
#> Date of fit: Mon Nov 26 12:27:59 2018
#> Date of summary: Mon Nov 26 12:27:59 2018
#>
#> Equations:
#> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
#>
#> Model predictions using solution type analytical
#>
#> Fitted with method Port using 64 model solutions performed in 0.155 s
#>
#> Weighting: none
#>
#> Starting values for parameters to be optimised:
#> value type
#> parent_0 85.1 state
#> alpha 1.0 deparm
#> beta 10.0 deparm
#>
#> Starting values for the transformed parameters actually optimised:
#> value lower upper
#> parent_0 85.100000 -Inf Inf
#> log_alpha 0.000000 -Inf Inf
#> log_beta 2.302585 -Inf Inf
#>
#> Fixed parameter values:
#> None
#>
#> Optimised, transformed parameters with symmetric confidence intervals:
#> Estimate Std. Error Lower Upper
#> parent_0 85.87000 2.2460 80.38000 91.3700
#> log_alpha 0.05192 0.1605 -0.34080 0.4446
#> log_beta 0.65100 0.2801 -0.03452 1.3360
#>
#> Parameter correlation:
#> parent_0 log_alpha log_beta
#> parent_0 1.0000 -0.2033 -0.3624
#> log_alpha -0.2033 1.0000 0.9547
#> log_beta -0.3624 0.9547 1.0000
#>
#> Residual standard error: 2.275 on 6 degrees of freedom
#>
#> Backtransformed parameters:
#> Confidence intervals for internally transformed parameters are asymmetric.
#> t-test (unrealistically) based on the assumption of normal distribution
#> for estimators of untransformed parameters.
#> Estimate t value Pr(>t) Lower Upper
#> parent_0 85.870 38.230 1.069e-08 80.3800 91.370
#> alpha 1.053 6.231 3.953e-04 0.7112 1.560
#> beta 1.917 3.570 5.895e-03 0.9661 3.806
#>
#> Chi2 error levels in percent:
#> err.min n.optim df
#> All data 6.657 3 6
#> parent 6.657 3 6
#>
#> Estimated disappearance times:
#> DT50 DT90 DT50back
#> parent 1.785 15.15 4.56
#>
#> Data:
#> time variable observed predicted residual
#> 0 parent 85.1 85.875 -0.7749
#> 1 parent 57.9 55.191 2.7091
#> 3 parent 29.9 31.845 -1.9452
#> 7 parent 14.6 17.012 -2.4124
#> 14 parent 9.7 9.241 0.4590
#> 28 parent 6.6 4.754 1.8460
#> 63 parent 4.0 2.102 1.8977
#> 91 parent 3.9 1.441 2.4590
#> 119 parent 0.6 1.092 -0.4919</div><div class='input'>
<span class='co'># One parent compound, one metabolite, both single first order.</span>
<span class='co'># Use mkinsub for convenience in model formulation. Pathway to sink included per default.</span>
<span class='no'>SFO_SFO</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(
<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>),
<span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span>
<span class='fu'>print</span>(<span class='fu'>system.time</span>(<span class='no'>fit</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_D</span>,
<span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"eigen"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)))</div><div class='output co'>#> User System verstrichen
#> 1.002 0.000 1.003 </div><div class='input'><span class='fu'>coef</span>(<span class='no'>fit</span>)</div><div class='output co'>#> parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink
#> 99.59848 -3.03822 -2.98030 -5.24750 </div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit</span>)</div><div class='output co'>#> $ff
#> parent_sink parent_m1 m1_sink
#> 0.485524 0.514476 1.000000
#>
#> $SFORB
#> logical(0)
#>
#> $distimes
#> DT50 DT90
#> parent 7.022929 23.32967
#> m1 131.760712 437.69961
#> </div><div class='input'><span class='co'># deSolve is slower when no C compiler (gcc) was available during model generation</span>
<span class='fu'>print</span>(<span class='fu'>system.time</span>(<span class='no'>fit.deSolve</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO</span>, <span class='no'>FOCUS_2006_D</span>,
<span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"deSolve"</span>)))</div><div class='output co'>#> Model cost at call 1 : 18915.53
#> Model cost at call 2 : 18915.53
#> Model cost at call 6 : 11424.02
#> Model cost at call 10 : 11424
#> Model cost at call 12 : 4094.396
#> Model cost at call 16 : 4094.396
#> Model cost at call 19 : 1340.595
#> Model cost at call 20 : 1340.593
#> Model cost at call 25 : 1072.239
#> Model cost at call 28 : 1072.236
#> Model cost at call 30 : 874.2615
#> Model cost at call 33 : 874.2611
#> Model cost at call 35 : 616.2377
#> Model cost at call 37 : 616.2372
#> Model cost at call 40 : 467.4386
#> Model cost at call 42 : 467.4381
#> Model cost at call 46 : 398.2914
#> Model cost at call 48 : 398.2914
#> Model cost at call 49 : 398.2913
#> Model cost at call 51 : 395.0712
#> Model cost at call 54 : 395.0711
#> Model cost at call 56 : 378.3298
#> Model cost at call 59 : 378.3298
#> Model cost at call 62 : 376.9812
#> Model cost at call 64 : 376.9811
#> Model cost at call 67 : 375.2085
#> Model cost at call 69 : 375.2085
#> Model cost at call 70 : 375.2085
#> Model cost at call 71 : 375.2085
#> Model cost at call 72 : 374.5723
#> Model cost at call 74 : 374.5723
#> Model cost at call 77 : 374.0075
#> Model cost at call 79 : 374.0075
#> Model cost at call 80 : 374.0075
#> Model cost at call 82 : 373.1711
#> Model cost at call 84 : 373.1711
#> Model cost at call 87 : 372.6445
#> Model cost at call 88 : 372.1614
#> Model cost at call 90 : 372.1614
#> Model cost at call 91 : 372.1614
#> Model cost at call 94 : 371.6464
#> Model cost at call 99 : 371.4299
#> Model cost at call 101 : 371.4299
#> Model cost at call 104 : 371.4071
#> Model cost at call 106 : 371.4071
#> Model cost at call 107 : 371.4071
#> Model cost at call 109 : 371.2524
#> Model cost at call 113 : 371.2524
#> Model cost at call 114 : 371.2136
#> Model cost at call 115 : 371.2136
#> Model cost at call 116 : 371.2136
#> Model cost at call 119 : 371.2134
#> Model cost at call 120 : 371.2134
#> Model cost at call 122 : 371.2134
#> Model cost at call 123 : 371.2134
#> Model cost at call 125 : 371.2134
#> Model cost at call 126 : 371.2134
#> Model cost at call 135 : 371.2134
#> Model cost at call 146 : 371.2134
#> Optimisation by method Port successfully terminated.
#> User System verstrichen
#> 0.794 0.000 0.793 </div><div class='input'><span class='fu'>coef</span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#> parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink
#> 99.59848 -3.03822 -2.98030 -5.24750 </div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span>(<span class='no'>fit.deSolve</span>)</div><div class='output co'>#> $ff
#> parent_sink parent_m1 m1_sink
#> 0.485524 0.514476 1.000000
#>
#> $SFORB
#> logical(0)
#>
#> $distimes
#> DT50 DT90
#> parent 7.022929 23.32967
#> m1 131.760711 437.69961
#> </div><div class='input'>
# Use stepwise fitting, using optimised parameters from parent only fit, FOMC
</div><div class='input'><span class='no'>FOMC_SFO</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(
<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"FOMC"</span>, <span class='st'>"m1"</span>),
<span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span>
<span class='no'>fit.FOMC_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>FOMC_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
<span class='co'># Use starting parameters from parent only FOMC fit</span>
<span class='no'>fit.FOMC</span> <span class='kw'>=</span> <span class='fu'>mkinfit</span>(<span class='st'>"FOMC"</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
<span class='no'>fit.FOMC_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>FOMC_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>,
<span class='kw'>parms.ini</span> <span class='kw'>=</span> <span class='no'>fit.FOMC</span>$<span class='no'>bparms.ode</span>)
<span class='co'># Use stepwise fitting, using optimised parameters from parent only fit, SFORB</span>
<span class='no'>SFORB_SFO</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(
<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFORB"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"m1"</span>, <span class='kw'>sink</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>),
<span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>))</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='co'># Fit the model to the FOCUS example dataset D using defaults</span>
<span class='no'>fit.SFORB_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFORB_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
<span class='no'>fit.SFORB_SFO.deSolve</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFORB_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>solution_type</span> <span class='kw'>=</span> <span class='st'>"deSolve"</span>,
<span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
<span class='co'># Use starting parameters from parent only SFORB fit (not really needed in this case)</span>
<span class='no'>fit.SFORB</span> <span class='kw'>=</span> <span class='fu'>mkinfit</span>(<span class='st'>"SFORB"</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
<span class='no'>fit.SFORB_SFO</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFORB_SFO</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>parms.ini</span> <span class='kw'>=</span> <span class='no'>fit.SFORB</span>$<span class='no'>bparms.ode</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)</div><div class='input'>
</div><div class='input'><span class='co'># Weighted fits, including IRLS</span>
<span class='no'>SFO_SFO.ff</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>, <span class='st'>"m1"</span>),
<span class='kw'>m1</span> <span class='kw'>=</span> <span class='fu'><a href='mkinsub.html'>mkinsub</a></span>(<span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='no'>f.noweight</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
<span class='fu'>summary</span>(<span class='no'>f.noweight</span>)</div><div class='output co'>#> mkin version used for fitting: 0.9.47.6
#> R version used for fitting: 3.5.1
#> Date of fit: Mon Nov 26 12:28:11 2018
#> Date of summary: Mon Nov 26 12:28:11 2018
#>
#> Equations:
#> d_parent/dt = - k_parent * parent
#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1
#>
#> Model predictions using solution type deSolve
#>
#> Fitted with method Port using 186 model solutions performed in 0.824 s
#>
#> Weighting: none
#>
#> Starting values for parameters to be optimised:
#> value type
#> parent_0 100.7500 state
#> k_parent 0.1000 deparm
#> k_m1 0.1001 deparm
#> f_parent_to_m1 0.5000 deparm
#>
#> Starting values for the transformed parameters actually optimised:
#> value lower upper
#> parent_0 100.750000 -Inf Inf
#> log_k_parent -2.302585 -Inf Inf
#> log_k_m1 -2.301586 -Inf Inf
#> f_parent_ilr_1 0.000000 -Inf Inf
#>
#> Fixed parameter values:
#> value type
#> m1_0 0 state
#>
#> Optimised, transformed parameters with symmetric confidence intervals:
#> Estimate Std. Error Lower Upper
#> parent_0 99.60000 1.61400 96.3300 102.9000
#> log_k_parent -2.31600 0.04187 -2.4010 -2.2310
#> log_k_m1 -5.24800 0.13610 -5.5230 -4.9720
#> f_parent_ilr_1 0.04096 0.06477 -0.0904 0.1723
#>
#> Parameter correlation:
#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1
#> parent_0 1.0000 0.5178 -0.1701 -0.5489
#> log_k_parent 0.5178 1.0000 -0.3285 -0.5451
#> log_k_m1 -0.1701 -0.3285 1.0000 0.7466
#> f_parent_ilr_1 -0.5489 -0.5451 0.7466 1.0000
#>
#> Residual standard error: 3.211 on 36 degrees of freedom
#>
#> Backtransformed parameters:
#> Confidence intervals for internally transformed parameters are asymmetric.
#> t-test (unrealistically) based on the assumption of normal distribution
#> for estimators of untransformed parameters.
#> Estimate t value Pr(>t) Lower Upper
#> parent_0 99.600000 61.720 2.024e-38 96.330000 1.029e+02
#> k_parent 0.098700 23.880 5.700e-24 0.090660 1.074e-01
#> k_m1 0.005261 7.349 5.758e-09 0.003992 6.933e-03
#> f_parent_to_m1 0.514500 22.490 4.375e-23 0.468100 5.606e-01
#>
#> Chi2 error levels in percent:
#> err.min n.optim df
#> All data 6.398 4 15
#> parent 6.459 2 7
#> m1 4.690 2 8
#>
#> Resulting formation fractions:
#> ff
#> parent_m1 0.5145
#> parent_sink 0.4855
#>
#> Estimated disappearance times:
#> DT50 DT90
#> parent 7.023 23.33
#> m1 131.761 437.70
#>
#> Data:
#> time variable observed predicted residual
#> 0 parent 99.46 99.59848 -1.385e-01
#> 0 parent 102.04 99.59848 2.442e+00
#> 1 parent 93.50 90.23787 3.262e+00
#> 1 parent 92.50 90.23787 2.262e+00
#> 3 parent 63.23 74.07319 -1.084e+01
#> 3 parent 68.99 74.07319 -5.083e+00
#> 7 parent 52.32 49.91206 2.408e+00
#> 7 parent 55.13 49.91206 5.218e+00
#> 14 parent 27.27 25.01257 2.257e+00
#> 14 parent 26.64 25.01257 1.627e+00
#> 21 parent 11.50 12.53462 -1.035e+00
#> 21 parent 11.64 12.53462 -8.946e-01
#> 35 parent 2.85 3.14787 -2.979e-01
#> 35 parent 2.91 3.14787 -2.379e-01
#> 50 parent 0.69 0.71624 -2.624e-02
#> 50 parent 0.63 0.71624 -8.624e-02
#> 75 parent 0.05 0.06074 -1.074e-02
#> 75 parent 0.06 0.06074 -7.381e-04
#> 0 m1 0.00 0.00000 0.000e+00
#> 0 m1 0.00 0.00000 0.000e+00
#> 1 m1 4.84 4.80296 3.704e-02
#> 1 m1 5.64 4.80296 8.370e-01
#> 3 m1 12.91 13.02400 -1.140e-01
#> 3 m1 12.96 13.02400 -6.400e-02
#> 7 m1 22.97 25.04476 -2.075e+00
#> 7 m1 24.47 25.04476 -5.748e-01
#> 14 m1 41.69 36.69002 5.000e+00
#> 14 m1 33.21 36.69002 -3.480e+00
#> 21 m1 44.37 41.65310 2.717e+00
#> 21 m1 46.44 41.65310 4.787e+00
#> 35 m1 41.22 43.31312 -2.093e+00
#> 35 m1 37.95 43.31312 -5.363e+00
#> 50 m1 41.19 41.21831 -2.831e-02
#> 50 m1 40.01 41.21831 -1.208e+00
#> 75 m1 40.09 36.44703 3.643e+00
#> 75 m1 33.85 36.44703 -2.597e+00
#> 100 m1 31.04 31.98163 -9.416e-01
#> 100 m1 33.13 31.98163 1.148e+00
#> 120 m1 25.15 28.78984 -3.640e+00
#> 120 m1 33.31 28.78984 4.520e+00</div><div class='input'><span class='no'>f.irls</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>reweight.method</span> <span class='kw'>=</span> <span class='st'>"obs"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
<span class='fu'>summary</span>(<span class='no'>f.irls</span>)</div><div class='output co'>#> mkin version used for fitting: 0.9.47.6
#> R version used for fitting: 3.5.1
#> Date of fit: Mon Nov 26 12:28:13 2018
#> Date of summary: Mon Nov 26 12:28:13 2018
#>
#> Equations:
#> d_parent/dt = - k_parent * parent
#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1
#>
#> Model predictions using solution type deSolve
#>
#> Fitted with method Port using 551 model solutions performed in 2.458 s
#>
#> Weighting: none
#>
#> Iterative reweighting with method obs
#> Final mean squared residuals of observed variables:
#> parent m1
#> 11.573407 7.407845
#>
#> Starting values for parameters to be optimised:
#> value type
#> parent_0 100.7500 state
#> k_parent 0.1000 deparm
#> k_m1 0.1001 deparm
#> f_parent_to_m1 0.5000 deparm
#>
#> Starting values for the transformed parameters actually optimised:
#> value lower upper
#> parent_0 100.750000 -Inf Inf
#> log_k_parent -2.302585 -Inf Inf
#> log_k_m1 -2.301586 -Inf Inf
#> f_parent_ilr_1 0.000000 -Inf Inf
#>
#> Fixed parameter values:
#> value type
#> m1_0 0 state
#>
#> Optimised, transformed parameters with symmetric confidence intervals:
#> Estimate Std. Error Lower Upper
#> parent_0 99.67000 1.79200 96.04000 103.300
#> log_k_parent -2.31200 0.04560 -2.40400 -2.219
#> log_k_m1 -5.25100 0.12510 -5.50500 -4.998
#> f_parent_ilr_1 0.03785 0.06318 -0.09027 0.166
#>
#> Parameter correlation:
#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1
#> parent_0 1.0000 0.5083 -0.1979 -0.6148
#> log_k_parent 0.5083 1.0000 -0.3894 -0.6062
#> log_k_m1 -0.1979 -0.3894 1.0000 0.7417
#> f_parent_ilr_1 -0.6148 -0.6062 0.7417 1.0000
#>
#> Residual standard error: 1.054 on 36 degrees of freedom
#>
#> Backtransformed parameters:
#> Confidence intervals for internally transformed parameters are asymmetric.
#> t-test (unrealistically) based on the assumption of normal distribution
#> for estimators of untransformed parameters.
#> Estimate t value Pr(>t) Lower Upper
#> parent_0 99.67000 55.630 8.185e-37 96.040000 1.033e+02
#> k_parent 0.09906 21.930 1.016e-22 0.090310 1.087e-01
#> k_m1 0.00524 7.996 8.486e-10 0.004066 6.753e-03
#> f_parent_to_m1 0.51340 23.000 2.038e-23 0.468100 5.584e-01
#>
#> Chi2 error levels in percent:
#> err.min n.optim df
#> All data 6.399 4 15
#> parent 6.466 2 7
#> m1 4.679 2 8
#>
#> Resulting formation fractions:
#> ff
#> parent_m1 0.5134
#> parent_sink 0.4866
#>
#> Estimated disappearance times:
#> DT50 DT90
#> parent 6.997 23.24
#> m1 132.282 439.43
#>
#> Data:
#> time variable observed predicted residual err
#> 0 parent 99.46 99.67218 -2.122e-01 3.402
#> 0 parent 102.04 99.67218 2.368e+00 3.402
#> 1 parent 93.50 90.27153 3.228e+00 3.402
#> 1 parent 92.50 90.27153 2.228e+00 3.402
#> 3 parent 63.23 74.04648 -1.082e+01 3.402
#> 3 parent 68.99 74.04648 -5.056e+00 3.402
#> 7 parent 52.32 49.82092 2.499e+00 3.402
#> 7 parent 55.13 49.82092 5.309e+00 3.402
#> 14 parent 27.27 24.90288 2.367e+00 3.402
#> 14 parent 26.64 24.90288 1.737e+00 3.402
#> 21 parent 11.50 12.44765 -9.476e-01 3.402
#> 21 parent 11.64 12.44765 -8.076e-01 3.402
#> 35 parent 2.85 3.11002 -2.600e-01 3.402
#> 35 parent 2.91 3.11002 -2.000e-01 3.402
#> 50 parent 0.69 0.70374 -1.374e-02 3.402
#> 50 parent 0.63 0.70374 -7.374e-02 3.402
#> 75 parent 0.05 0.05913 -9.134e-03 3.402
#> 75 parent 0.06 0.05913 8.662e-04 3.402
#> 0 m1 0.00 0.00000 0.000e+00 2.722
#> 0 m1 0.00 0.00000 0.000e+00 2.722
#> 1 m1 4.84 4.81328 2.672e-02 2.722
#> 1 m1 5.64 4.81328 8.267e-01 2.722
#> 3 m1 12.91 13.04779 -1.378e-01 2.722
#> 3 m1 12.96 13.04779 -8.779e-02 2.722
#> 7 m1 22.97 25.07615 -2.106e+00 2.722
#> 7 m1 24.47 25.07615 -6.062e-01 2.722
#> 14 m1 41.69 36.70729 4.983e+00 2.722
#> 14 m1 33.21 36.70729 -3.497e+00 2.722
#> 21 m1 44.37 41.65050 2.720e+00 2.722
#> 21 m1 46.44 41.65050 4.790e+00 2.722
#> 35 m1 41.22 43.28866 -2.069e+00 2.722
#> 35 m1 37.95 43.28866 -5.339e+00 2.722
#> 50 m1 41.19 41.19339 -3.386e-03 2.722
#> 50 m1 40.01 41.19339 -1.183e+00 2.722
#> 75 m1 40.09 36.43820 3.652e+00 2.722
#> 75 m1 33.85 36.43820 -2.588e+00 2.722
#> 100 m1 31.04 31.98971 -9.497e-01 2.722
#> 100 m1 33.13 31.98971 1.140e+00 2.722
#> 120 m1 25.15 28.80898 -3.659e+00 2.722
#> 120 m1 33.31 28.80898 4.501e+00 2.722</div><div class='input'><span class='no'>f.w.mean</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>FOCUS_2006_D</span>, <span class='kw'>weight</span> <span class='kw'>=</span> <span class='st'>"mean"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
<span class='fu'>summary</span>(<span class='no'>f.w.mean</span>)</div><div class='output co'>#> mkin version used for fitting: 0.9.47.6
#> R version used for fitting: 3.5.1
#> Date of fit: Mon Nov 26 12:28:14 2018
#> Date of summary: Mon Nov 26 12:28:14 2018
#>
#> Equations:
#> d_parent/dt = - k_parent * parent
#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1
#>
#> Model predictions using solution type deSolve
#>
#> Fitted with method Port using 155 model solutions performed in 0.69 s
#>
#> Weighting: mean
#>
#> Starting values for parameters to be optimised:
#> value type
#> parent_0 100.7500 state
#> k_parent 0.1000 deparm
#> k_m1 0.1001 deparm
#> f_parent_to_m1 0.5000 deparm
#>
#> Starting values for the transformed parameters actually optimised:
#> value lower upper
#> parent_0 100.750000 -Inf Inf
#> log_k_parent -2.302585 -Inf Inf
#> log_k_m1 -2.301586 -Inf Inf
#> f_parent_ilr_1 0.000000 -Inf Inf
#>
#> Fixed parameter values:
#> value type
#> m1_0 0 state
#>
#> Optimised, transformed parameters with symmetric confidence intervals:
#> Estimate Std. Error Lower Upper
#> parent_0 99.7300 1.93200 95.81000 103.6000
#> log_k_parent -2.3090 0.04837 -2.40700 -2.2110
#> log_k_m1 -5.2550 0.12070 -5.49900 -5.0100
#> f_parent_ilr_1 0.0354 0.06344 -0.09327 0.1641
#>
#> Parameter correlation:
#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1
#> parent_0 1.0000 0.5004 -0.2143 -0.6514
#> log_k_parent 0.5004 1.0000 -0.4282 -0.6383
#> log_k_m1 -0.2143 -0.4282 1.0000 0.7390
#> f_parent_ilr_1 -0.6514 -0.6383 0.7390 1.0000
#>
#> Residual standard error: 0.09829 on 36 degrees of freedom
#>
#> Backtransformed parameters:
#> Confidence intervals for internally transformed parameters are asymmetric.
#> t-test (unrealistically) based on the assumption of normal distribution
#> for estimators of untransformed parameters.
#> Estimate t value Pr(>t) Lower Upper
#> parent_0 99.730000 51.630 1.166e-35 95.81000 1.036e+02
#> k_parent 0.099360 20.670 7.304e-22 0.09007 1.096e-01
#> k_m1 0.005224 8.287 3.649e-10 0.00409 6.672e-03
#> f_parent_to_m1 0.512500 22.860 2.497e-23 0.46710 5.578e-01
#>
#> Chi2 error levels in percent:
#> err.min n.optim df
#> All data 6.401 4 15
#> parent 6.473 2 7
#> m1 4.671 2 8
#>
#> Resulting formation fractions:
#> ff
#> parent_m1 0.5125
#> parent_sink 0.4875
#>
#> Estimated disappearance times:
#> DT50 DT90
#> parent 6.976 23.18
#> m1 132.696 440.81
#>
#> Data:
#> time variable observed predicted residual
#> 0 parent 99.46 99.73057 -0.270570
#> 0 parent 102.04 99.73057 2.309430
#> 1 parent 93.50 90.29805 3.201945
#> 1 parent 92.50 90.29805 2.201945
#> 3 parent 63.23 74.02503 -10.795028
#> 3 parent 68.99 74.02503 -5.035028
#> 7 parent 52.32 49.74838 2.571618
#> 7 parent 55.13 49.74838 5.381618
#> 14 parent 27.27 24.81588 2.454124
#> 14 parent 26.64 24.81588 1.824124
#> 21 parent 11.50 12.37885 -0.878849
#> 21 parent 11.64 12.37885 -0.738849
#> 35 parent 2.85 3.08022 -0.230219
#> 35 parent 2.91 3.08022 -0.170219
#> 50 parent 0.69 0.69396 -0.003958
#> 50 parent 0.63 0.69396 -0.063958
#> 75 parent 0.05 0.05789 -0.007888
#> 75 parent 0.06 0.05789 0.002112
#> 0 m1 0.00 0.00000 0.000000
#> 0 m1 0.00 0.00000 0.000000
#> 1 m1 4.84 4.82149 0.018512
#> 1 m1 5.64 4.82149 0.818512
#> 3 m1 12.91 13.06669 -0.156692
#> 3 m1 12.96 13.06669 -0.106692
#> 7 m1 22.97 25.10106 -2.131058
#> 7 m1 24.47 25.10106 -0.631058
#> 14 m1 41.69 36.72092 4.969077
#> 14 m1 33.21 36.72092 -3.510923
#> 21 m1 44.37 41.64835 2.721647
#> 21 m1 46.44 41.64835 4.791647
#> 35 m1 41.22 43.26923 -2.049225
#> 35 m1 37.95 43.26923 -5.319225
#> 50 m1 41.19 41.17364 0.016361
#> 50 m1 40.01 41.17364 -1.163639
#> 75 m1 40.09 36.43122 3.658776
#> 75 m1 33.85 36.43122 -2.581224
#> 100 m1 31.04 31.99612 -0.956124
#> 100 m1 33.13 31.99612 1.133876
#> 120 m1 25.15 28.82413 -3.674128
#> 120 m1 33.31 28.82413 4.485872</div><div class='input'><span class='no'>f.w.value</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='fu'>subset</span>(<span class='no'>FOCUS_2006_D</span>, <span class='no'>value</span> <span class='kw'>!=</span> <span class='fl'>0</span>), <span class='kw'>err</span> <span class='kw'>=</span> <span class='st'>"value"</span>,
<span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
<span class='fu'>summary</span>(<span class='no'>f.w.value</span>)</div><div class='output co'>#> mkin version used for fitting: 0.9.47.6
#> R version used for fitting: 3.5.1
#> Date of fit: Mon Nov 26 12:28:15 2018
#> Date of summary: Mon Nov 26 12:28:15 2018
#>
#> Equations:
#> d_parent/dt = - k_parent * parent
#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1
#>
#> Model predictions using solution type deSolve
#>
#> Fitted with method Port using 174 model solutions performed in 0.774 s
#>
#> Weighting: manual
#>
#> Starting values for parameters to be optimised:
#> value type
#> parent_0 100.7500 state
#> k_parent 0.1000 deparm
#> k_m1 0.1001 deparm
#> f_parent_to_m1 0.5000 deparm
#>
#> Starting values for the transformed parameters actually optimised:
#> value lower upper
#> parent_0 100.750000 -Inf Inf
#> log_k_parent -2.302585 -Inf Inf
#> log_k_m1 -2.301586 -Inf Inf
#> f_parent_ilr_1 0.000000 -Inf Inf
#>
#> Fixed parameter values:
#> value type
#> m1_0 0 state
#>
#> Optimised, transformed parameters with symmetric confidence intervals:
#> Estimate Std. Error Lower Upper
#> parent_0 99.6600 2.712000 94.14000 105.2000
#> log_k_parent -2.2980 0.008118 -2.31500 -2.2820
#> log_k_m1 -5.2410 0.096690 -5.43800 -5.0450
#> f_parent_ilr_1 0.0231 0.057990 -0.09474 0.1409
#>
#> Parameter correlation:
#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1
#> parent_0 1.00000 0.6843 -0.08687 -0.7564
#> log_k_parent 0.68435 1.0000 -0.12695 -0.5812
#> log_k_m1 -0.08687 -0.1269 1.00000 0.5195
#> f_parent_ilr_1 -0.75644 -0.5812 0.51952 1.0000
#>
#> Residual standard error: 0.08396 on 34 degrees of freedom
#>
#> Backtransformed parameters:
#> Confidence intervals for internally transformed parameters are asymmetric.
#> t-test (unrealistically) based on the assumption of normal distribution
#> for estimators of untransformed parameters.
#> Estimate t value Pr(>t) Lower Upper
#> parent_0 99.660000 36.75 2.957e-29 94.14000 1.052e+02
#> k_parent 0.100400 123.20 5.927e-47 0.09878 1.021e-01
#> k_m1 0.005295 10.34 2.447e-12 0.00435 6.444e-03
#> f_parent_to_m1 0.508200 24.79 1.184e-23 0.46660 5.497e-01
#>
#> Chi2 error levels in percent:
#> err.min n.optim df
#> All data 6.461 4 15
#> parent 6.520 2 7
#> m1 4.744 2 8
#>
#> Resulting formation fractions:
#> ff
#> parent_m1 0.5082
#> parent_sink 0.4918
#>
#> Estimated disappearance times:
#> DT50 DT90
#> parent 6.902 22.93
#> m1 130.916 434.89
#>
#> Data:
#> time variable observed predicted residual err
#> 0 parent 99.46 99.65571 -0.195715 99.46
#> 0 parent 102.04 99.65571 2.384285 102.04
#> 1 parent 93.50 90.13383 3.366170 93.50
#> 1 parent 92.50 90.13383 2.366170 92.50
#> 3 parent 63.23 73.73252 -10.502518 63.23
#> 3 parent 68.99 73.73252 -4.742518 68.99
#> 7 parent 52.32 49.34027 2.979728 52.32
#> 7 parent 55.13 49.34027 5.789728 55.13
#> 14 parent 27.27 24.42873 2.841271 27.27
#> 14 parent 26.64 24.42873 2.211271 26.64
#> 21 parent 11.50 12.09484 -0.594842 11.50
#> 21 parent 11.64 12.09484 -0.454842 11.64
#> 35 parent 2.85 2.96482 -0.114824 2.85
#> 35 parent 2.91 2.96482 -0.054824 2.91
#> 50 parent 0.69 0.65733 0.032670 0.69
#> 50 parent 0.63 0.65733 -0.027330 0.63
#> 75 parent 0.05 0.05339 -0.003386 0.05
#> 75 parent 0.06 0.05339 0.006614 0.06
#> 1 m1 4.84 4.82570 0.014301 4.84
#> 1 m1 5.64 4.82570 0.814301 5.64
#> 3 m1 12.91 13.06402 -0.154020 12.91
#> 3 m1 12.96 13.06402 -0.104020 12.96
#> 7 m1 22.97 25.04656 -2.076564 22.97
#> 7 m1 24.47 25.04656 -0.576564 24.47
#> 14 m1 41.69 36.53601 5.153988 41.69
#> 14 m1 33.21 36.53601 -3.326012 33.21
#> 21 m1 44.37 41.34639 3.023609 44.37
#> 21 m1 46.44 41.34639 5.093609 46.44
#> 35 m1 41.22 42.82669 -1.606690 41.22
#> 35 m1 37.95 42.82669 -4.876690 37.95
#> 50 m1 41.19 40.67342 0.516578 41.19
#> 50 m1 40.01 40.67342 -0.663422 40.01
#> 75 m1 40.09 35.91105 4.178947 40.09
#> 75 m1 33.85 35.91105 -2.061053 33.85
#> 100 m1 31.04 31.48161 -0.441612 31.04
#> 100 m1 33.13 31.48161 1.648388 33.13
#> 120 m1 25.15 28.32018 -3.170181 25.15
#> 120 m1 33.31 28.32018 4.989819 33.31</div><div class='input'>
</div><div class='input'><span class='co'># Manual weighting</span>
<span class='no'>dw</span> <span class='kw'><-</span> <span class='no'>FOCUS_2006_D</span>
<span class='no'>errors</span> <span class='kw'><-</span> <span class='fu'>c</span>(<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fl'>2</span>, <span class='kw'>m1</span> <span class='kw'>=</span> <span class='fl'>1</span>)
<span class='no'>dw</span>$<span class='no'>err.man</span> <span class='kw'><-</span> <span class='no'>errors</span>[<span class='no'>FOCUS_2006_D</span>$<span class='no'>name</span>]
<span class='no'>f.w.man</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>dw</span>, <span class='kw'>err</span> <span class='kw'>=</span> <span class='st'>"err.man"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>)
<span class='fu'>summary</span>(<span class='no'>f.w.man</span>)</div><div class='output co'>#> mkin version used for fitting: 0.9.47.6
#> R version used for fitting: 3.5.1
#> Date of fit: Mon Nov 26 12:28:16 2018
#> Date of summary: Mon Nov 26 12:28:16 2018
#>
#> Equations:
#> d_parent/dt = - k_parent * parent
#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1
#>
#> Model predictions using solution type deSolve
#>
#> Fitted with method Port using 270 model solutions performed in 1.205 s
#>
#> Weighting: manual
#>
#> Starting values for parameters to be optimised:
#> value type
#> parent_0 100.7500 state
#> k_parent 0.1000 deparm
#> k_m1 0.1001 deparm
#> f_parent_to_m1 0.5000 deparm
#>
#> Starting values for the transformed parameters actually optimised:
#> value lower upper
#> parent_0 100.750000 -Inf Inf
#> log_k_parent -2.302585 -Inf Inf
#> log_k_m1 -2.301586 -Inf Inf
#> f_parent_ilr_1 0.000000 -Inf Inf
#>
#> Fixed parameter values:
#> value type
#> m1_0 0 state
#>
#> Optimised, transformed parameters with symmetric confidence intervals:
#> Estimate Std. Error Lower Upper
#> parent_0 99.49000 1.33200 96.7800 102.2000
#> log_k_parent -2.32100 0.03550 -2.3930 -2.2490
#> log_k_m1 -5.24100 0.21280 -5.6730 -4.8100
#> f_parent_ilr_1 0.04571 0.08966 -0.1361 0.2275
#>
#> Parameter correlation:
#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1
#> parent_0 1.00000 0.5312 -0.09456 -0.3351
#> log_k_parent 0.53123 1.0000 -0.17800 -0.3360
#> log_k_m1 -0.09456 -0.1780 1.00000 0.7616
#> f_parent_ilr_1 -0.33514 -0.3360 0.76156 1.0000
#>
#> Residual standard error: 2.628 on 36 degrees of freedom
#>
#> Backtransformed parameters:
#> Confidence intervals for internally transformed parameters are asymmetric.
#> t-test (unrealistically) based on the assumption of normal distribution
#> for estimators of untransformed parameters.
#> Estimate t value Pr(>t) Lower Upper
#> parent_0 99.490000 74.69 2.221e-41 96.780000 1.022e+02
#> k_parent 0.098140 28.17 2.012e-26 0.091320 1.055e-01
#> k_m1 0.005292 4.70 1.873e-05 0.003437 8.148e-03
#> f_parent_to_m1 0.516200 16.30 1.686e-18 0.452000 5.798e-01
#>
#> Chi2 error levels in percent:
#> err.min n.optim df
#> All data 6.400 4 15
#> parent 6.454 2 7
#> m1 4.708 2 8
#>
#> Resulting formation fractions:
#> ff
#> parent_m1 0.5162
#> parent_sink 0.4838
#>
#> Estimated disappearance times:
#> DT50 DT90
#> parent 7.063 23.46
#> m1 130.971 435.08
#>
#> Data:
#> time variable observed predicted residual err
#> 0 parent 99.46 99.48598 -0.025979 1
#> 0 parent 102.04 99.48598 2.554021 1
#> 1 parent 93.50 90.18612 3.313880 1
#> 1 parent 92.50 90.18612 2.313880 1
#> 3 parent 63.23 74.11316 -10.883163 1
#> 3 parent 68.99 74.11316 -5.123163 1
#> 7 parent 52.32 50.05030 2.269705 1
#> 7 parent 55.13 50.05030 5.079705 1
#> 14 parent 27.27 25.17975 2.090250 1
#> 14 parent 26.64 25.17975 1.460250 1
#> 21 parent 11.50 12.66765 -1.167654 1
#> 21 parent 11.64 12.66765 -1.027654 1
#> 35 parent 2.85 3.20616 -0.356164 1
#> 35 parent 2.91 3.20616 -0.296164 1
#> 50 parent 0.69 0.73562 -0.045619 1
#> 50 parent 0.63 0.73562 -0.105619 1
#> 75 parent 0.05 0.06326 -0.013256 1
#> 75 parent 0.06 0.06326 -0.003256 1
#> 0 m1 0.00 0.00000 0.000000 2
#> 0 m1 0.00 0.00000 0.000000 2
#> 1 m1 4.84 4.78729 0.052713 2
#> 1 m1 5.64 4.78729 0.852713 2
#> 3 m1 12.91 12.98785 -0.077848 2
#> 3 m1 12.96 12.98785 -0.027848 2
#> 7 m1 22.97 24.99695 -2.026946 2
#> 7 m1 24.47 24.99695 -0.526946 2
#> 14 m1 41.69 36.66353 5.026472 2
#> 14 m1 33.21 36.66353 -3.453528 2
#> 21 m1 44.37 41.65681 2.713186 2
#> 21 m1 46.44 41.65681 4.783186 2
#> 35 m1 41.22 43.35031 -2.130314 2
#> 35 m1 37.95 43.35031 -5.400314 2
#> 50 m1 41.19 41.25637 -0.066368 2
#> 50 m1 40.01 41.25637 -1.246368 2
#> 75 m1 40.09 36.46057 3.629429 2
#> 75 m1 33.85 36.46057 -2.610571 2
#> 100 m1 31.04 31.96929 -0.929293 2
#> 100 m1 33.13 31.96929 1.160707 2
#> 120 m1 25.15 28.76062 -3.610621 2
#> 120 m1 33.31 28.76062 4.549379 2</div><div class='input'><span class='no'>f.w.man.irls</span> <span class='kw'><-</span> <span class='fu'>mkinfit</span>(<span class='no'>SFO_SFO.ff</span>, <span class='no'>dw</span>, <span class='kw'>err</span> <span class='kw'>=</span> <span class='st'>"err.man"</span>, <span class='kw'>quiet</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>,
<span class='kw'>reweight.method</span> <span class='kw'>=</span> <span class='st'>"obs"</span>)
<span class='fu'>summary</span>(<span class='no'>f.w.man.irls</span>)</div><div class='output co'>#> mkin version used for fitting: 0.9.47.6
#> R version used for fitting: 3.5.1
#> Date of fit: Mon Nov 26 12:28:19 2018
#> Date of summary: Mon Nov 26 12:28:19 2018
#>
#> Equations:
#> d_parent/dt = - k_parent * parent
#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1
#>
#> Model predictions using solution type deSolve
#>
#> Fitted with method Port using 692 model solutions performed in 3.1 s
#>
#> Weighting: manual
#>
#> Iterative reweighting with method obs
#> Final mean squared residuals of observed variables:
#> parent m1
#> 11.573406 7.407846
#>
#> Starting values for parameters to be optimised:
#> value type
#> parent_0 100.7500 state
#> k_parent 0.1000 deparm
#> k_m1 0.1001 deparm
#> f_parent_to_m1 0.5000 deparm
#>
#> Starting values for the transformed parameters actually optimised:
#> value lower upper
#> parent_0 100.750000 -Inf Inf
#> log_k_parent -2.302585 -Inf Inf
#> log_k_m1 -2.301586 -Inf Inf
#> f_parent_ilr_1 0.000000 -Inf Inf
#>
#> Fixed parameter values:
#> value type
#> m1_0 0 state
#>
#> Optimised, transformed parameters with symmetric confidence intervals:
#> Estimate Std. Error Lower Upper
#> parent_0 99.67000 1.79200 96.04000 103.300
#> log_k_parent -2.31200 0.04560 -2.40400 -2.220
#> log_k_m1 -5.25100 0.12510 -5.50500 -4.998
#> f_parent_ilr_1 0.03785 0.06318 -0.09027 0.166
#>
#> Parameter correlation:
#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1
#> parent_0 1.0000 0.5083 -0.1979 -0.6148
#> log_k_parent 0.5083 1.0000 -0.3894 -0.6062
#> log_k_m1 -0.1979 -0.3894 1.0000 0.7417
#> f_parent_ilr_1 -0.6148 -0.6062 0.7417 1.0000
#>
#> Residual standard error: 1.054 on 36 degrees of freedom
#>
#> Backtransformed parameters:
#> Confidence intervals for internally transformed parameters are asymmetric.
#> t-test (unrealistically) based on the assumption of normal distribution
#> for estimators of untransformed parameters.
#> Estimate t value Pr(>t) Lower Upper
#> parent_0 99.67000 55.630 8.185e-37 96.040000 1.033e+02
#> k_parent 0.09906 21.930 1.016e-22 0.090310 1.087e-01
#> k_m1 0.00524 7.996 8.486e-10 0.004066 6.753e-03
#> f_parent_to_m1 0.51340 23.000 2.039e-23 0.468100 5.584e-01
#>
#> Chi2 error levels in percent:
#> err.min n.optim df
#> All data 6.399 4 15
#> parent 6.466 2 7
#> m1 4.679 2 8
#>
#> Resulting formation fractions:
#> ff
#> parent_m1 0.5134
#> parent_sink 0.4866
#>
#> Estimated disappearance times:
#> DT50 DT90
#> parent 6.997 23.24
#> m1 132.282 439.43
#>
#> Data:
#> time variable observed predicted residual err.ini err
#> 0 parent 99.46 99.67217 -2.122e-01 1 3.402
#> 0 parent 102.04 99.67217 2.368e+00 1 3.402
#> 1 parent 93.50 90.27152 3.228e+00 1 3.402
#> 1 parent 92.50 90.27152 2.228e+00 1 3.402
#> 3 parent 63.23 74.04648 -1.082e+01 1 3.402
#> 3 parent 68.99 74.04648 -5.056e+00 1 3.402
#> 7 parent 52.32 49.82092 2.499e+00 1 3.402
#> 7 parent 55.13 49.82092 5.309e+00 1 3.402
#> 14 parent 27.27 24.90288 2.367e+00 1 3.402
#> 14 parent 26.64 24.90288 1.737e+00 1 3.402
#> 21 parent 11.50 12.44765 -9.477e-01 1 3.402
#> 21 parent 11.64 12.44765 -8.077e-01 1 3.402
#> 35 parent 2.85 3.11002 -2.600e-01 1 3.402
#> 35 parent 2.91 3.11002 -2.000e-01 1 3.402
#> 50 parent 0.69 0.70375 -1.375e-02 1 3.402
#> 50 parent 0.63 0.70375 -7.375e-02 1 3.402
#> 75 parent 0.05 0.05913 -9.134e-03 1 3.402
#> 75 parent 0.06 0.05913 8.661e-04 1 3.402
#> 0 m1 0.00 0.00000 0.000e+00 2 2.722
#> 0 m1 0.00 0.00000 0.000e+00 2 2.722
#> 1 m1 4.84 4.81328 2.672e-02 2 2.722
#> 1 m1 5.64 4.81328 8.267e-01 2 2.722
#> 3 m1 12.91 13.04779 -1.378e-01 2 2.722
#> 3 m1 12.96 13.04779 -8.779e-02 2 2.722
#> 7 m1 22.97 25.07615 -2.106e+00 2 2.722
#> 7 m1 24.47 25.07615 -6.062e-01 2 2.722
#> 14 m1 41.69 36.70729 4.983e+00 2 2.722
#> 14 m1 33.21 36.70729 -3.497e+00 2 2.722
#> 21 m1 44.37 41.65050 2.719e+00 2 2.722
#> 21 m1 46.44 41.65050 4.789e+00 2 2.722
#> 35 m1 41.22 43.28866 -2.069e+00 2 2.722
#> 35 m1 37.95 43.28866 -5.339e+00 2 2.722
#> 50 m1 41.19 41.19339 -3.387e-03 2 2.722
#> 50 m1 40.01 41.19339 -1.183e+00 2 2.722
#> 75 m1 40.09 36.43820 3.652e+00 2 2.722
#> 75 m1 33.85 36.43820 -2.588e+00 2 2.722
#> 100 m1 31.04 31.98971 -9.497e-01 2 2.722
#> 100 m1 33.13 31.98971 1.140e+00 2 2.722
#> 120 m1 25.15 28.80897 -3.659e+00 2 2.722
#> 120 m1 33.31 28.80897 4.501e+00 2 2.722</div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="sidebar">
<h2>Contents</h2>
<ul class="nav nav-pills nav-stacked">
<li><a href="#arguments">Arguments</a></li>
<li><a href="#value">Value</a></li>
<li><a href="#see-also">See also</a></li>
<li><a href="#note">Note</a></li>
<li><a href="#note">Note</a></li>
<li><a href="#source">Source</a></li>
<li><a href="#examples">Examples</a></li>
</ul>
<h2>Author</h2>
Johannes Ranke
</div>
</div>
<footer>
<div class="copyright">
<p>Developed by Johannes Ranke.</p>
</div>
<div class="pkgdown">
<p>Site built with <a href="http://pkgdown.r-lib.org/">pkgdown</a>.</p>
</div>
</footer>
</div>
</body>
</html>
|