1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
|
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Create an nlme model for an mmkin row object — nlme.mmkin • mkin</title><!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"><script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css"><script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"><script src="../pkgdown.js"></script><meta property="og:title" content="Create an nlme model for an mmkin row object — nlme.mmkin"><meta property="og:description" content="This functions sets up a nonlinear mixed effects model for an mmkin row
object. An mmkin row object is essentially a list of mkinfit objects that
have been obtained by fitting the same model to a list of datasets."><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]--></head><body data-spy="scroll" data-target="#toc">
<div class="container template-reference-topic">
<header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.3</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav"><li>
<a href="../reference/index.html">Reference</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
Articles
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu"><li>
<a href="../articles/mkin.html">Introduction to mkin</a>
</li>
<li class="divider">
<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>
<li>
<a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
</li>
<li>
<a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
</li>
<li>
<a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
</li>
<li class="divider">
<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>
<li>
<a href="../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>
</li>
<li>
<a href="../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>
</li>
<li>
<a href="../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>
</li>
<li>
<a href="../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>
</li>
<li>
<a href="../articles/web_only/multistart.html">Short demo of the multistart method</a>
</li>
<li class="divider">
<li class="dropdown-header">Performance</li>
<li>
<a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
</li>
<li>
<a href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a>
</li>
<li>
<a href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>
</li>
<li class="divider">
<li class="dropdown-header">Miscellaneous</li>
<li>
<a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
</li>
<li>
<a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
</li>
</ul></li>
<li>
<a href="../news/index.html">News</a>
</li>
</ul><ul class="nav navbar-nav navbar-right"><li>
<a href="https://github.com/jranke/mkin/" class="external-link">
<span class="fab fa-github fa-lg"></span>
</a>
</li>
</ul></div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
</header><div class="row">
<div class="col-md-9 contents">
<div class="page-header">
<h1>Create an nlme model for an mmkin row object</h1>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/R/nlme.mmkin.R" class="external-link"><code>R/nlme.mmkin.R</code></a></small>
<div class="hidden name"><code>nlme.mmkin.Rd</code></div>
</div>
<div class="ref-description">
<p>This functions sets up a nonlinear mixed effects model for an mmkin row
object. An mmkin row object is essentially a list of mkinfit objects that
have been obtained by fitting the same model to a list of datasets.</p>
</div>
<div id="ref-usage">
<div class="sourceCode"><pre class="sourceCode r"><code><span><span class="co"># S3 method for mmkin</span></span>
<span><span class="fu"><a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme</a></span><span class="op">(</span></span>
<span> <span class="va">model</span>,</span>
<span> data <span class="op">=</span> <span class="st">"auto"</span>,</span>
<span> fixed <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">as.list</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/names.html" class="external-link">names</a></span><span class="op">(</span><span class="fu"><a href="mean_degparms.html">mean_degparms</a></span><span class="op">(</span><span class="va">model</span><span class="op">)</span><span class="op">)</span><span class="op">)</span>, <span class="kw">function</span><span class="op">(</span><span class="va">el</span><span class="op">)</span> <span class="fu"><a href="https://rdrr.io/r/base/eval.html" class="external-link">eval</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/parse.html" class="external-link">parse</a></span><span class="op">(</span>text <span class="op">=</span></span>
<span> <span class="fu"><a href="https://rdrr.io/r/base/paste.html" class="external-link">paste</a></span><span class="op">(</span><span class="va">el</span>, <span class="fl">1</span>, sep <span class="op">=</span> <span class="st">"~"</span><span class="op">)</span><span class="op">)</span><span class="op">)</span><span class="op">)</span>,</span>
<span> random <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/pkg/nlme/man/pdDiag.html" class="external-link">pdDiag</a></span><span class="op">(</span><span class="va">fixed</span><span class="op">)</span>,</span>
<span> <span class="va">groups</span>,</span>
<span> start <span class="op">=</span> <span class="fu"><a href="mean_degparms.html">mean_degparms</a></span><span class="op">(</span><span class="va">model</span>, random <span class="op">=</span> <span class="cn">TRUE</span>, test_log_parms <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span>,</span>
<span> correlation <span class="op">=</span> <span class="cn">NULL</span>,</span>
<span> weights <span class="op">=</span> <span class="cn">NULL</span>,</span>
<span> <span class="va">subset</span>,</span>
<span> method <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"ML"</span>, <span class="st">"REML"</span><span class="op">)</span>,</span>
<span> na.action <span class="op">=</span> <span class="va">na.fail</span>,</span>
<span> <span class="va">naPattern</span>,</span>
<span> control <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="op">)</span>,</span>
<span> verbose <span class="op">=</span> <span class="cn">FALSE</span></span>
<span><span class="op">)</span></span>
<span></span>
<span><span class="co"># S3 method for nlme.mmkin</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">x</span>, digits <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/Extremes.html" class="external-link">max</a></span><span class="op">(</span><span class="fl">3</span>, <span class="fu"><a href="https://rdrr.io/r/base/options.html" class="external-link">getOption</a></span><span class="op">(</span><span class="st">"digits"</span><span class="op">)</span> <span class="op">-</span> <span class="fl">3</span><span class="op">)</span>, <span class="va">...</span><span class="op">)</span></span>
<span></span>
<span><span class="co"># S3 method for nlme.mmkin</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">object</span>, <span class="va">...</span><span class="op">)</span></span></code></pre></div>
</div>
<div id="arguments">
<h2>Arguments</h2>
<dl><dt>model</dt>
<dd><p>An <a href="mmkin.html">mmkin</a> row object.</p></dd>
<dt>data</dt>
<dd><p>Ignored, data are taken from the mmkin model</p></dd>
<dt>fixed</dt>
<dd><p>Ignored, all degradation parameters fitted in the
mmkin model are used as fixed parameters</p></dd>
<dt>random</dt>
<dd><p>If not specified, no correlations between random effects are
set up for the optimised degradation model parameters. This is
achieved by using the <a href="https://rdrr.io/pkg/nlme/man/pdDiag.html" class="external-link">nlme::pdDiag</a> method.</p></dd>
<dt>groups</dt>
<dd><p>See the documentation of nlme</p></dd>
<dt>start</dt>
<dd><p>If not specified, mean values of the fitted degradation
parameters taken from the mmkin object are used</p></dd>
<dt>correlation</dt>
<dd><p>See the documentation of nlme</p></dd>
<dt>weights</dt>
<dd><p>passed to nlme</p></dd>
<dt>subset</dt>
<dd><p>passed to nlme</p></dd>
<dt>method</dt>
<dd><p>passed to nlme</p></dd>
<dt>na.action</dt>
<dd><p>passed to nlme</p></dd>
<dt>naPattern</dt>
<dd><p>passed to nlme</p></dd>
<dt>control</dt>
<dd><p>passed to nlme</p></dd>
<dt>verbose</dt>
<dd><p>passed to nlme</p></dd>
<dt>x</dt>
<dd><p>An nlme.mmkin object to print</p></dd>
<dt>digits</dt>
<dd><p>Number of digits to use for printing</p></dd>
<dt>...</dt>
<dd><p>Update specifications passed to update.nlme</p></dd>
<dt>object</dt>
<dd><p>An nlme.mmkin object to update</p></dd>
</dl></div>
<div id="value">
<h2>Value</h2>
<p>Upon success, a fitted 'nlme.mmkin' object, which is an nlme object
with additional elements. It also inherits from 'mixed.mmkin'.</p>
</div>
<div id="details">
<h2>Details</h2>
<p>Note that the convergence of the nlme algorithms depends on the quality
of the data. In degradation kinetics, we often only have few datasets
(e.g. data for few soils) and complicated degradation models, which may
make it impossible to obtain convergence with nlme.</p>
</div>
<div id="note">
<h2>Note</h2>
<p>As the object inherits from <a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme::nlme</a>, there is a wealth of
methods that will automatically work on 'nlme.mmkin' objects, such as
<code><a href="https://rdrr.io/pkg/nlme/man/intervals.html" class="external-link">nlme::intervals()</a></code>, <code><a href="https://rdrr.io/pkg/nlme/man/anova.lme.html" class="external-link">nlme::anova.lme()</a></code> and <code><a href="https://rdrr.io/pkg/nlme/man/coef.lme.html" class="external-link">nlme::coef.lme()</a></code>.</p>
</div>
<div id="see-also">
<h2>See also</h2>
<div class="dont-index"><p><code><a href="nlme.html">nlme_function()</a></code>, <a href="plot.mixed.mmkin.html">plot.mixed.mmkin</a>, <a href="summary.nlme.mmkin.html">summary.nlme.mmkin</a></p></div>
</div>
<div id="ref-examples">
<h2>Examples</h2>
<div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span><span class="va">ds</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="va">experimental_data_for_UBA_2019</span><span class="op">[</span><span class="fl">6</span><span class="op">:</span><span class="fl">10</span><span class="op">]</span>,</span></span>
<span class="r-in"><span> <span class="kw">function</span><span class="op">(</span><span class="va">x</span><span class="op">)</span> <span class="fu"><a href="https://rdrr.io/r/base/subset.html" class="external-link">subset</a></span><span class="op">(</span><span class="va">x</span><span class="op">$</span><span class="va">data</span><span class="op">[</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"name"</span>, <span class="st">"time"</span>, <span class="st">"value"</span><span class="op">)</span><span class="op">]</span>, <span class="va">name</span> <span class="op">==</span> <span class="st">"parent"</span><span class="op">)</span><span class="op">)</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span><span class="co"># \dontrun{</span></span></span>
<span class="r-in"><span> <span class="va">f</span> <span class="op"><-</span> <span class="fu"><a href="mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"DFOP"</span><span class="op">)</span>, <span class="va">ds</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>, cores <span class="op">=</span> <span class="fl">1</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://svn.r-project.org/R-packages/trunk/nlme/" class="external-link">nlme</a></span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="va">f_nlme_sfo</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme</a></span><span class="op">(</span><span class="va">f</span><span class="op">[</span><span class="st">"SFO"</span>, <span class="op">]</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="va">f_nlme_dfop</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme</a></span><span class="op">(</span><span class="va">f</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_nlme_sfo</span>, <span class="va">f_nlme_dfop</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> Model df AIC BIC logLik Test L.Ratio p-value</span>
<span class="r-out co"><span class="r-pr">#></span> f_nlme_sfo 1 5 625.0539 637.5529 -307.5269 </span>
<span class="r-out co"><span class="r-pr">#></span> f_nlme_dfop 2 9 495.1270 517.6253 -238.5635 1 vs 2 137.9268 <.0001</span>
<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">f_nlme_dfop</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> Kinetic nonlinear mixed-effects model fit by maximum likelihood</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Structural model:</span>
<span class="r-out co"><span class="r-pr">#></span> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *</span>
<span class="r-out co"><span class="r-pr">#></span> time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))</span>
<span class="r-out co"><span class="r-pr">#></span> * parent</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Data:</span>
<span class="r-out co"><span class="r-pr">#></span> 90 observations of 1 variable(s) grouped in 5 datasets</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Log-likelihood: -238.6</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Fixed effects:</span>
<span class="r-out co"><span class="r-pr">#></span> list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1) </span>
<span class="r-out co"><span class="r-pr">#></span> parent_0 log_k1 log_k2 g_qlogis </span>
<span class="r-out co"><span class="r-pr">#></span> 94.1702 -1.8002 -4.1474 0.0324 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Random effects:</span>
<span class="r-out co"><span class="r-pr">#></span> Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)</span>
<span class="r-out co"><span class="r-pr">#></span> Level: ds</span>
<span class="r-out co"><span class="r-pr">#></span> Structure: Diagonal</span>
<span class="r-out co"><span class="r-pr">#></span> parent_0 log_k1 log_k2 g_qlogis Residual</span>
<span class="r-out co"><span class="r-pr">#></span> StdDev: 2.488 0.8447 1.33 0.4652 2.321</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_nlme_dfop</span><span class="op">)</span></span></span>
<span class="r-plt img"><img src="nlme.mmkin-1.png" alt="" width="700" height="433"></span>
<span class="r-in"><span> <span class="fu"><a href="endpoints.html">endpoints</a></span><span class="op">(</span><span class="va">f_nlme_dfop</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> $distimes</span>
<span class="r-out co"><span class="r-pr">#></span> DT50 DT90 DT50back DT50_k1 DT50_k2</span>
<span class="r-out co"><span class="r-pr">#></span> parent 10.79857 100.7937 30.34192 4.193936 43.85441</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="va">ds_2</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/lapply.html" class="external-link">lapply</a></span><span class="op">(</span><span class="va">experimental_data_for_UBA_2019</span><span class="op">[</span><span class="fl">6</span><span class="op">:</span><span class="fl">10</span><span class="op">]</span>,</span></span>
<span class="r-in"><span> <span class="kw">function</span><span class="op">(</span><span class="va">x</span><span class="op">)</span> <span class="va">x</span><span class="op">$</span><span class="va">data</span><span class="op">[</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"name"</span>, <span class="st">"time"</span>, <span class="st">"value"</span><span class="op">)</span><span class="op">]</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="va">m_sfo_sfo</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span>parent <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"A1"</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> A1 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, use_of_ff <span class="op">=</span> <span class="st">"min"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="va">m_sfo_sfo_ff</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span>parent <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"A1"</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> A1 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, use_of_ff <span class="op">=</span> <span class="st">"max"</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="va">m_dfop_sfo</span> <span class="op"><-</span> <span class="fu"><a href="mkinmod.html">mkinmod</a></span><span class="op">(</span>parent <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="st">"A1"</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> A1 <span class="op">=</span> <span class="fu"><a href="mkinmod.html">mkinsub</a></span><span class="op">(</span><span class="st">"SFO"</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="va">f_2</span> <span class="op"><-</span> <span class="fu"><a href="mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="st">"SFO-SFO"</span> <span class="op">=</span> <span class="va">m_sfo_sfo</span>,</span></span>
<span class="r-in"><span> <span class="st">"SFO-SFO-ff"</span> <span class="op">=</span> <span class="va">m_sfo_sfo_ff</span>,</span></span>
<span class="r-in"><span> <span class="st">"DFOP-SFO"</span> <span class="op">=</span> <span class="va">m_dfop_sfo</span><span class="op">)</span>,</span></span>
<span class="r-in"><span> <span class="va">ds_2</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="va">f_nlme_sfo_sfo</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme</a></span><span class="op">(</span><span class="va">f_2</span><span class="op">[</span><span class="st">"SFO-SFO"</span>, <span class="op">]</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_nlme_sfo_sfo</span><span class="op">)</span></span></span>
<span class="r-plt img"><img src="nlme.mmkin-2.png" alt="" width="700" height="433"></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="co"># With formation fractions this does not coverge with defaults</span></span></span>
<span class="r-in"><span> <span class="co"># f_nlme_sfo_sfo_ff <- nlme(f_2["SFO-SFO-ff", ])</span></span></span>
<span class="r-in"><span> <span class="co">#plot(f_nlme_sfo_sfo_ff)</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="co"># For the following, we need to increase pnlsMaxIter and the tolerance</span></span></span>
<span class="r-in"><span> <span class="co"># to get convergence</span></span></span>
<span class="r-in"><span> <span class="va">f_nlme_dfop_sfo</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme</a></span><span class="op">(</span><span class="va">f_2</span><span class="op">[</span><span class="st">"DFOP-SFO"</span>, <span class="op">]</span>,</span></span>
<span class="r-in"><span> control <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>pnlsMaxIter <span class="op">=</span> <span class="fl">120</span>, tolerance <span class="op">=</span> <span class="fl">5e-4</span><span class="op">)</span><span class="op">)</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">f_nlme_dfop_sfo</span><span class="op">)</span></span></span>
<span class="r-plt img"><img src="nlme.mmkin-3.png" alt="" width="700" height="433"></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_nlme_dfop_sfo</span>, <span class="va">f_nlme_sfo_sfo</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> Model df AIC BIC logLik Test L.Ratio p-value</span>
<span class="r-out co"><span class="r-pr">#></span> f_nlme_dfop_sfo 1 13 843.8547 884.6201 -408.9274 </span>
<span class="r-out co"><span class="r-pr">#></span> f_nlme_sfo_sfo 2 9 1085.1821 1113.4043 -533.5910 1 vs 2 249.3274 <.0001</span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="fu"><a href="endpoints.html">endpoints</a></span><span class="op">(</span><span class="va">f_nlme_sfo_sfo</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> $ff</span>
<span class="r-out co"><span class="r-pr">#></span> parent_sink parent_A1 A1_sink </span>
<span class="r-out co"><span class="r-pr">#></span> 0.5912432 0.4087568 1.0000000 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> $distimes</span>
<span class="r-out co"><span class="r-pr">#></span> DT50 DT90</span>
<span class="r-out co"><span class="r-pr">#></span> parent 19.13518 63.5657</span>
<span class="r-out co"><span class="r-pr">#></span> A1 66.02155 219.3189</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-in"><span> <span class="fu"><a href="endpoints.html">endpoints</a></span><span class="op">(</span><span class="va">f_nlme_dfop_sfo</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> $ff</span>
<span class="r-out co"><span class="r-pr">#></span> parent_A1 parent_sink </span>
<span class="r-out co"><span class="r-pr">#></span> 0.2768575 0.7231425 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> $distimes</span>
<span class="r-out co"><span class="r-pr">#></span> DT50 DT90 DT50back DT50_k1 DT50_k2</span>
<span class="r-out co"><span class="r-pr">#></span> parent 11.07091 104.6320 31.49737 4.462384 46.20825</span>
<span class="r-out co"><span class="r-pr">#></span> A1 162.30507 539.1658 NA NA NA</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="kw">if</span> <span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/length.html" class="external-link">length</a></span><span class="op">(</span><span class="fu">findFunction</span><span class="op">(</span><span class="st">"varConstProp"</span><span class="op">)</span><span class="op">)</span> <span class="op">></span> <span class="fl">0</span><span class="op">)</span> <span class="op">{</span> <span class="co"># tc error model for nlme available</span></span></span>
<span class="r-in"><span> <span class="co"># Attempts to fit metabolite kinetics with the tc error model are possible,</span></span></span>
<span class="r-in"><span> <span class="co"># but need tweeking of control values and sometimes do not converge</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="va">f_tc</span> <span class="op"><-</span> <span class="fu"><a href="mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"DFOP"</span><span class="op">)</span>, <span class="va">ds</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="va">f_nlme_sfo_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme</a></span><span class="op">(</span><span class="va">f_tc</span><span class="op">[</span><span class="st">"SFO"</span>, <span class="op">]</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="va">f_nlme_dfop_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme</a></span><span class="op">(</span><span class="va">f_tc</span><span class="op">[</span><span class="st">"DFOP"</span>, <span class="op">]</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/stats/AIC.html" class="external-link">AIC</a></span><span class="op">(</span><span class="va">f_nlme_sfo</span>, <span class="va">f_nlme_sfo_tc</span>, <span class="va">f_nlme_dfop</span>, <span class="va">f_nlme_dfop_tc</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">f_nlme_dfop_tc</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="op">}</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> Kinetic nonlinear mixed-effects model fit by maximum likelihood</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Structural model:</span>
<span class="r-out co"><span class="r-pr">#></span> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *</span>
<span class="r-out co"><span class="r-pr">#></span> time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))</span>
<span class="r-out co"><span class="r-pr">#></span> * parent</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Data:</span>
<span class="r-out co"><span class="r-pr">#></span> 90 observations of 1 variable(s) grouped in 5 datasets</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Log-likelihood: -238.4</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Fixed effects:</span>
<span class="r-out co"><span class="r-pr">#></span> list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1) </span>
<span class="r-out co"><span class="r-pr">#></span> parent_0 log_k1 log_k2 g_qlogis </span>
<span class="r-out co"><span class="r-pr">#></span> 94.04773 -1.82340 -4.16716 0.05686 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Random effects:</span>
<span class="r-out co"><span class="r-pr">#></span> Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)</span>
<span class="r-out co"><span class="r-pr">#></span> Level: ds</span>
<span class="r-out co"><span class="r-pr">#></span> Structure: Diagonal</span>
<span class="r-out co"><span class="r-pr">#></span> parent_0 log_k1 log_k2 g_qlogis Residual</span>
<span class="r-out co"><span class="r-pr">#></span> StdDev: 2.474 0.85 1.337 0.4659 1</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Variance function:</span>
<span class="r-out co"><span class="r-pr">#></span> Structure: Constant plus proportion of variance covariate</span>
<span class="r-out co"><span class="r-pr">#></span> Formula: ~fitted(.) </span>
<span class="r-out co"><span class="r-pr">#></span> Parameter estimates:</span>
<span class="r-out co"><span class="r-pr">#></span> const prop </span>
<span class="r-out co"><span class="r-pr">#></span> 2.23223593 0.01262367 </span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="va">f_2_obs</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_2</span>, error_model <span class="op">=</span> <span class="st">"obs"</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="va">f_nlme_sfo_sfo_obs</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme</a></span><span class="op">(</span><span class="va">f_2_obs</span><span class="op">[</span><span class="st">"SFO-SFO"</span>, <span class="op">]</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">f_nlme_sfo_sfo_obs</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> Kinetic nonlinear mixed-effects model fit by maximum likelihood</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Structural model:</span>
<span class="r-out co"><span class="r-pr">#></span> d_parent/dt = - k_parent_sink * parent - k_parent_A1 * parent</span>
<span class="r-out co"><span class="r-pr">#></span> d_A1/dt = + k_parent_A1 * parent - k_A1_sink * A1</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Data:</span>
<span class="r-out co"><span class="r-pr">#></span> 170 observations of 2 variable(s) grouped in 5 datasets</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Log-likelihood: -473</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Fixed effects:</span>
<span class="r-out co"><span class="r-pr">#></span> list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1, log_k_A1_sink ~ 1) </span>
<span class="r-out co"><span class="r-pr">#></span> parent_0 log_k_parent_sink log_k_parent_A1 log_k_A1_sink </span>
<span class="r-out co"><span class="r-pr">#></span> 87.976 -3.670 -4.164 -4.645 </span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Random effects:</span>
<span class="r-out co"><span class="r-pr">#></span> Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1, log_k_A1_sink ~ 1)</span>
<span class="r-out co"><span class="r-pr">#></span> Level: ds</span>
<span class="r-out co"><span class="r-pr">#></span> Structure: Diagonal</span>
<span class="r-out co"><span class="r-pr">#></span> parent_0 log_k_parent_sink log_k_parent_A1 log_k_A1_sink Residual</span>
<span class="r-out co"><span class="r-pr">#></span> StdDev: 3.992 1.777 1.055 0.4821 6.483</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> Variance function:</span>
<span class="r-out co"><span class="r-pr">#></span> Structure: Different standard deviations per stratum</span>
<span class="r-out co"><span class="r-pr">#></span> Formula: ~1 | name </span>
<span class="r-out co"><span class="r-pr">#></span> Parameter estimates:</span>
<span class="r-out co"><span class="r-pr">#></span> parent A1 </span>
<span class="r-out co"><span class="r-pr">#></span> 1.0000000 0.2049994 </span>
<span class="r-in"><span> <span class="va">f_nlme_dfop_sfo_obs</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/pkg/nlme/man/nlme.html" class="external-link">nlme</a></span><span class="op">(</span><span class="va">f_2_obs</span><span class="op">[</span><span class="st">"DFOP-SFO"</span>, <span class="op">]</span>,</span></span>
<span class="r-in"><span> control <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span>pnlsMaxIter <span class="op">=</span> <span class="fl">120</span>, tolerance <span class="op">=</span> <span class="fl">5e-4</span><span class="op">)</span><span class="op">)</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="va">f_2_tc</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/stats/update.html" class="external-link">update</a></span><span class="op">(</span><span class="va">f_2</span>, error_model <span class="op">=</span> <span class="st">"tc"</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="co"># f_nlme_sfo_sfo_tc <- nlme(f_2_tc["SFO-SFO", ]) # No convergence with 50 iterations</span></span></span>
<span class="r-in"><span> <span class="co"># f_nlme_dfop_sfo_tc <- nlme(f_2_tc["DFOP-SFO", ],</span></span></span>
<span class="r-in"><span> <span class="co"># control = list(pnlsMaxIter = 120, tolerance = 5e-4)) # Error in X[, fmap[[nm]]] <- gradnm</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/stats/anova.html" class="external-link">anova</a></span><span class="op">(</span><span class="va">f_nlme_dfop_sfo</span>, <span class="va">f_nlme_dfop_sfo_obs</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> Model df AIC BIC logLik Test L.Ratio</span>
<span class="r-out co"><span class="r-pr">#></span> f_nlme_dfop_sfo 1 13 843.8547 884.6201 -408.9274 </span>
<span class="r-out co"><span class="r-pr">#></span> f_nlme_dfop_sfo_obs 2 14 817.5338 861.4350 -394.7669 1 vs 2 28.32093</span>
<span class="r-out co"><span class="r-pr">#></span> p-value</span>
<span class="r-out co"><span class="r-pr">#></span> f_nlme_dfop_sfo </span>
<span class="r-out co"><span class="r-pr">#></span> f_nlme_dfop_sfo_obs <.0001</span>
<span class="r-in"><span></span></span>
<span class="r-in"><span><span class="co"># }</span></span></span>
</code></pre></div>
</div>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top"><h2 data-toc-skip>Contents</h2>
</nav></div>
</div>
<footer><div class="copyright">
<p></p><p>Developed by Johannes Ranke.</p>
</div>
<div class="pkgdown">
<p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>
</div>
</footer></div>
</body></html>
|