1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
|
<!-- Generated by pkgdown: do not edit by hand -->
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Metabolism data set used for checking the software quality of KinGUI — schaefer07_complex_case • mkin</title>
<!-- jquery -->
<script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha384-nrOSfDHtoPMzJHjVTdCopGqIqeYETSXhZDFyniQ8ZHcVy08QesyHcnOUpMpqnmWq" crossorigin="anonymous"></script>
<!-- Bootstrap -->
<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<!-- Font Awesome icons -->
<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" integrity="sha384-T8Gy5hrqNKT+hzMclPo118YTQO6cYprQmhrYwIiQ/3axmI1hQomh7Ud2hPOy8SP1" crossorigin="anonymous">
<!-- pkgdown -->
<link href="../pkgdown.css" rel="stylesheet">
<script src="../jquery.sticky-kit.min.js"></script>
<script src="../pkgdown.js"></script>
<!-- mathjax -->
<script src='https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML'></script>
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<div class="container template-reference-topic">
<header>
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="../index.html">mkin</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="../reference/index.html">Reference</a>
</li>
<li>
<a href="../articles/index.html">Articles</a>
</li>
<li>
<a href="../news/index.html">News</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li>
<a href="http://github.com/jranke/mkin">
<span class="fa fa-github fa-lg"></span>
</a>
</li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
</header>
<div class="row">
<div class="col-md-9 contents">
<div class="page-header">
<h1>Metabolism data set used for checking the software quality of KinGUI</h1>
</div>
<p>This dataset was used for a comparison of KinGUI and ModelMaker to check the
software quality of KinGUI in the original publication (Schäfer et al., 2007).
The results from the fitting are also included.</p>
<pre><span class='fu'>data</span>(<span class='no'>schaefer07_complex_case</span>)</pre>
<h2 class="hasAnchor" id="format"><a class="anchor" href="#format"></a>Format</h2>
<p>The data set is a data frame with 8 observations on the following 6 variables.
<dl class='dl-horizontal'>
<dt><code>time</code></dt><dd>a numeric vector</dd>
<dt><code>parent</code></dt><dd>a numeric vector</dd>
<dt><code>A1</code></dt><dd>a numeric vector</dd>
<dt><code>B1</code></dt><dd>a numeric vector</dd>
<dt><code>C1</code></dt><dd>a numeric vector</dd>
<dt><code>A2</code></dt><dd>a numeric vector</dd>
</dl></p>
<p>The results are a data frame with 14 results for different parameter values</p>
<h2 class="hasAnchor" id="references"><a class="anchor" href="#references"></a>References</h2>
<p>Schäfer D, Mikolasch B, Rainbird P and Harvey B (2007). KinGUI: a new kinetic
software tool for evaluations according to FOCUS degradation kinetics. In: Del
Re AAM, Capri E, Fragoulis G and Trevisan M (Eds.). Proceedings of the XIII
Symposium Pesticide Chemistry, Piacenza, 2007, p. 916-923.</p>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><div class='input'><span class='no'>data</span> <span class='kw'><-</span> <span class='fu'><a href='mkin_wide_to_long.html'>mkin_wide_to_long</a></span>(<span class='no'>schaefer07_complex_case</span>, <span class='kw'>time</span> <span class='kw'>=</span> <span class='st'>"time"</span>)
<span class='no'>model</span> <span class='kw'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span>(
<span class='kw'>parent</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='fu'>c</span>(<span class='st'>"A1"</span>, <span class='st'>"B1"</span>, <span class='st'>"C1"</span>), <span class='kw'>sink</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>),
<span class='kw'>A1</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>, <span class='kw'>to</span> <span class='kw'>=</span> <span class='st'>"A2"</span>),
<span class='kw'>B1</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>),
<span class='kw'>C1</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>),
<span class='kw'>A2</span> <span class='kw'>=</span> <span class='fu'>list</span>(<span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"SFO"</span>), <span class='kw'>use_of_ff</span> <span class='kw'>=</span> <span class='st'>"max"</span>)</div><div class='output co'>#> <span class='message'>Successfully compiled differential equation model from auto-generated C code.</span></div><div class='input'><span class='fu'><a href='mkinfit.html'>mkinfit</a></span>(<span class='no'>model</span>, <span class='no'>data</span>)</div><div class='output co'>#> Model cost at call 1 : 2511.655
#> Model cost at call 2 : 2511.655
#> Model cost at call 11 : 1436.639
#> Model cost at call 12 : 1436.638
#> Model cost at call 13 : 1436.566
#> Model cost at call 21 : 643.6583
#> Model cost at call 22 : 643.6583
#> Model cost at call 23 : 643.6582
#> Model cost at call 29 : 643.6576
#> Model cost at call 31 : 454.0244
#> Model cost at call 32 : 454.0241
#> Model cost at call 34 : 454.0229
#> Model cost at call 43 : 378.1144
#> Model cost at call 45 : 378.1143
#> Model cost at call 53 : 357.245
#> Model cost at call 55 : 357.2449
#> Model cost at call 56 : 357.2447
#> Model cost at call 63 : 354.3415
#> Model cost at call 64 : 354.3415
#> Model cost at call 65 : 354.3413
#> Model cost at call 73 : 332.49
#> Model cost at call 74 : 332.49
#> Model cost at call 81 : 332.4899
#> Model cost at call 83 : 315.2962
#> Model cost at call 84 : 306.3085
#> Model cost at call 86 : 306.3084
#> Model cost at call 87 : 306.3084
#> Model cost at call 92 : 306.3083
#> Model cost at call 94 : 290.6377
#> Model cost at call 96 : 290.6375
#> Model cost at call 98 : 290.6375
#> Model cost at call 101 : 290.6371
#> Model cost at call 105 : 269.09
#> Model cost at call 107 : 269.0899
#> Model cost at call 115 : 259.7551
#> Model cost at call 120 : 259.7549
#> Model cost at call 123 : 259.7547
#> Model cost at call 126 : 253.7973
#> Model cost at call 128 : 253.7972
#> Model cost at call 137 : 251.7358
#> Model cost at call 139 : 251.7358
#> Model cost at call 147 : 250.7394
#> Model cost at call 149 : 250.7393
#> Model cost at call 157 : 249.1148
#> Model cost at call 159 : 249.1148
#> Model cost at call 167 : 246.8768
#> Model cost at call 169 : 246.8768
#> Model cost at call 177 : 244.9758
#> Model cost at call 179 : 244.9758
#> Model cost at call 187 : 243.2914
#> Model cost at call 189 : 243.2914
#> Model cost at call 190 : 243.2914
#> Model cost at call 194 : 243.2914
#> Model cost at call 199 : 242.9202
#> Model cost at call 201 : 242.9202
#> Model cost at call 202 : 242.9202
#> Model cost at call 209 : 242.7695
#> Model cost at call 211 : 242.7695
#> Model cost at call 216 : 242.7695
#> Model cost at call 219 : 242.5771
#> Model cost at call 221 : 242.5771
#> Model cost at call 229 : 242.4402
#> Model cost at call 231 : 242.4402
#> Model cost at call 239 : 242.1878
#> Model cost at call 241 : 242.1878
#> Model cost at call 249 : 242.0553
#> Model cost at call 251 : 242.0553
#> Model cost at call 256 : 242.0553
#> Model cost at call 259 : 241.8761
#> Model cost at call 260 : 241.7412
#> Model cost at call 261 : 241.6954
#> Model cost at call 264 : 241.6954
#> Model cost at call 275 : 241.5982
#> Model cost at call 277 : 241.5982
#> Model cost at call 285 : 241.5459
#> Model cost at call 287 : 241.5459
#> Model cost at call 295 : 241.4837
#> Model cost at call 297 : 241.4837
#> Model cost at call 305 : 241.3882
#> Model cost at call 306 : 241.3161
#> Model cost at call 307 : 241.2315
#> Model cost at call 309 : 241.2315
#> Model cost at call 314 : 241.2315
#> Model cost at call 317 : 240.9738
#> Model cost at call 322 : 240.9738
#> Model cost at call 327 : 240.8244
#> Model cost at call 329 : 240.8244
#> Model cost at call 337 : 240.7005
#> Model cost at call 339 : 240.7005
#> Model cost at call 342 : 240.7005
#> Model cost at call 347 : 240.629
#> Model cost at call 350 : 240.629
#> Model cost at call 357 : 240.6193
#> Model cost at call 358 : 240.6193
#> Model cost at call 364 : 240.6193
#> Model cost at call 367 : 240.6193
#> Model cost at call 369 : 240.5873
#> Model cost at call 374 : 240.5873
#> Model cost at call 380 : 240.578
#> Model cost at call 382 : 240.578
#> Model cost at call 390 : 240.5723
#> Model cost at call 393 : 240.5723
#> Model cost at call 403 : 240.569
#> Model cost at call 404 : 240.569
#> Model cost at call 413 : 240.569
#> Model cost at call 415 : 240.5688
#> Model cost at call 416 : 240.5688
#> Model cost at call 417 : 240.5688
#> Model cost at call 431 : 240.5686
#> Model cost at call 432 : 240.5686
#> Model cost at call 434 : 240.5686
#> Model cost at call 443 : 240.5686
#> Model cost at call 444 : 240.5686
#> Model cost at call 447 : 240.5686
#> Model cost at call 449 : 240.5686
#> Model cost at call 450 : 240.5686
#> Model cost at call 466 : 240.5686
#> Model cost at call 470 : 240.5686
#> Model cost at call 485 : 240.5686
#> Model cost at call 509 : 240.5686
#> Optimisation by method Port successfully terminated.</div><div class='output co'>#> $par
#> parent_0 log_k_parent log_k_A1 log_k_B1 log_k_C1
#> 91.9181598 -3.0020485 -4.2735924 -3.9846764 -2.7852180
#> log_k_A2 f_parent_ilr_1 f_parent_ilr_2 f_A1_ilr_1
#> -3.7166415 0.4718588 -0.3589948 -0.1477244
#>
#> $ssr
#> [1] 240.5686
#>
#> $convergence
#> [1] 0
#>
#> $iterations
#> [1] 43
#>
#> $evaluations
#> function gradient
#> 62 441
#>
#> $counts
#> [1] "relative convergence (4)"
#>
#> $hessian
#> parent_0 log_k_parent log_k_A1 log_k_B1
#> parent_0 7.3650812 -92.141920 -1.001134e+01 -2.432415e+00
#> log_k_parent -92.1419204 6632.673492 -4.316240e+01 -1.320833e+01
#> log_k_A1 -10.0113364 -43.162398 6.071628e+02 0.000000e+00
#> log_k_B1 -2.4324147 -13.208329 0.000000e+00 1.572303e+02
#> log_k_C1 -4.7153201 -118.288037 -5.878291e-05 -3.073041e-06
#> log_k_A2 -0.4360727 -5.304259 -1.977980e+01 0.000000e+00
#> f_parent_ilr_1 10.5460899 271.145438 -5.299954e+02 1.874235e+02
#> f_parent_ilr_2 11.6409409 222.570696 -4.773816e+02 -1.159875e+02
#> f_A1_ilr_1 0.5572072 10.374810 2.850173e+01 0.000000e+00
#> log_k_C1 log_k_A2 f_parent_ilr_1 f_parent_ilr_2
#> parent_0 -4.715320e+00 -4.360727e-01 10.54609 11.64094
#> log_k_parent -1.182880e+02 -5.304259e+00 271.14544 222.57070
#> log_k_A1 -5.878291e-05 -1.977980e+01 -529.99537 -477.38164
#> log_k_B1 -3.073041e-06 0.000000e+00 187.42348 -115.98754
#> log_k_C1 3.372749e+02 -2.395674e-06 56.85184 305.98862
#> log_k_A2 -2.395674e-06 2.749192e+01 -23.08549 -20.79373
#> f_parent_ilr_1 5.685184e+01 -2.308549e+01 1256.24941 632.09769
#> f_parent_ilr_2 3.059886e+02 -2.079373e+01 632.09769 1250.65147
#> f_A1_ilr_1 3.158891e-06 -3.129286e+01 29.49830 26.56991
#> f_A1_ilr_1
#> parent_0 5.572072e-01
#> log_k_parent 1.037481e+01
#> log_k_A1 2.850173e+01
#> log_k_B1 0.000000e+00
#> log_k_C1 3.158891e-06
#> log_k_A2 -3.129286e+01
#> f_parent_ilr_1 2.949830e+01
#> f_parent_ilr_2 2.656991e+01
#> f_A1_ilr_1 3.998554e+01
#>
#> $residuals
#> parent parent parent parent parent parent parent
#> -1.2818402 -1.9372115 -0.5105519 3.8165318 -2.3531716 4.8043342 -2.2775432
#> parent A1 A1 A1 A1 A1 A1
#> -5.3608524 4.1967522 2.9032987 -1.3124875 -0.6021093 2.5092324 -1.8861396
#> B1 B1 B1 B1 B1 C1 C1
#> 4.3801768 5.5002481 -5.7917184 1.3852658 0.5313301 1.2796458 1.7105311
#> C1 C1 C1 C1 C1 A2 A2
#> 3.7116712 -0.1182953 0.5228429 -0.8570298 -3.5476556 -0.5447276 -1.3652404
#> A2 A2 A2 A2 A2
#> -0.3330261 -0.5802059 0.1285850 0.2119280 -0.1381990
#>
#> $ms
#> [1] 7.289956
#>
#> $var_ms
#> parent A1 B1 C1 A2
#> 10.3459333 6.3301336 17.0367907 4.5639474 0.3841002
#>
#> $var_ms_unscaled
#> parent A1 B1 C1 A2
#> 10.3459333 6.3301336 17.0367907 4.5639474 0.3841002
#>
#> $var_ms_unweighted
#> parent A1 B1 C1 A2
#> 10.3459333 6.3301336 17.0367907 4.5639474 0.3841002
#>
#> $rank
#> [1] 9
#>
#> $df.residual
#> [1] 24
#>
#> $solution_type
#> [1] "deSolve"
#>
#> $transform_rates
#> [1] TRUE
#>
#> $transform_fractions
#> [1] TRUE
#>
#> $method.modFit
#> [1] "Port"
#>
#> $maxit.modFit
#> [1] "auto"
#>
#> $calls
#> [1] 523
#>
#> $time
#> user system elapsed
#> 5.004 0.000 5.004
#>
#> $mkinmod
#> <mkinmod> model generated with
#> Use of formation fractions $use_of_ff: max
#> Specification $spec:
#> $parent
#> $type: SFO; $to: A1, B1, C1; $sink: FALSE
#> $A1
#> $type: SFO; $to: A2; $sink: TRUE
#> $B1
#> $type: SFO; $sink: TRUE
#> $C1
#> $type: SFO; $sink: TRUE
#> $A2
#> $type: SFO; $sink: TRUE
#> Coefficient matrix $coefmat available
#> Compiled model $cf available
#>
#> $observed
#> name time value
#> 1 parent 0 93.20
#> 2 parent 1 89.40
#> 3 parent 3 79.70
#> 4 parent 7 61.10
#> 5 parent 14 48.20
#> 6 parent 30 15.90
#> 7 parent 62 6.50
#> 8 parent 100 6.00
#> 9 A1 0 NA
#> 10 A1 1 NA
#> 11 A1 3 0.55
#> 12 A1 7 6.87
#> 13 A1 14 17.08
#> 14 A1 30 21.68
#> 15 A1 62 15.77
#> 16 A1 100 13.63
#> 17 B1 0 NA
#> 18 B1 1 NA
#> 19 B1 3 NA
#> 20 B1 7 0.55
#> 21 B1 14 2.31
#> 22 B1 30 15.76
#> 23 B1 62 6.36
#> 24 B1 100 3.74
#> 25 C1 0 NA
#> 26 C1 1 0.55
#> 27 C1 3 3.20
#> 28 C1 7 5.46
#> 29 C1 14 12.55
#> 30 C1 30 10.45
#> 31 C1 62 4.74
#> 32 C1 100 4.33
#> 33 A2 0 NA
#> 34 A2 1 0.55
#> 35 A2 3 1.41
#> 36 A2 7 0.55
#> 37 A2 14 1.29
#> 38 A2 30 1.95
#> 39 A2 62 3.54
#> 40 A2 100 3.86
#>
#> $obs_vars
#> [1] "parent" "A1" "B1" "C1" "A2"
#>
#> $predicted
#> name time value
#> 1 parent 0.000000 91.918159794
#> 2 parent 1.000000 87.462788491
#> 3 parent 1.010101 87.418904506
#> 4 parent 2.020202 83.139880984
#> 5 parent 3.000000 79.189448055
#> 6 parent 3.030303 79.070309209
#> 7 parent 4.040404 75.199936833
#> 8 parent 5.050505 71.519013349
#> 9 parent 6.060606 68.018265517
#> 10 parent 7.000000 64.916531757
#> 11 parent 7.070707 64.688874011
#> 12 parent 8.080808 61.522451197
#> 13 parent 9.090909 58.511020005
#> 14 parent 10.101010 55.646993828
#> 15 parent 11.111111 52.923157412
#> 16 parent 12.121212 50.332648680
#> 17 parent 13.131313 47.868941444
#> 18 parent 14.000000 45.846828365
#> 19 parent 14.141414 45.525828960
#> 20 parent 15.151515 43.297408299
#> 21 parent 16.161616 41.178065468
#> 22 parent 17.171717 39.162461272
#> 23 parent 18.181818 37.245517861
#> 24 parent 19.191919 35.422405939
#> 25 parent 20.202020 33.688532595
#> 26 parent 21.212121 32.039529737
#> 27 parent 22.222222 30.471243081
#> 28 parent 23.232323 28.979721692
#> 29 parent 24.242424 27.561208025
#> 30 parent 25.252525 26.212128463
#> 31 parent 26.262626 24.929084310
#> 32 parent 27.272727 23.708843233
#> 33 parent 28.282828 22.548331117
#> 34 parent 29.292929 21.444624318
#> 35 parent 30.000000 20.704334210
#> 36 parent 30.303030 20.394942302
#> 37 parent 31.313131 19.396640638
#> 38 parent 32.323232 18.447204335
#> 39 parent 33.333333 17.544241506
#> 40 parent 34.343434 16.685477346
#> 41 parent 35.353535 15.868748397
#> 42 parent 36.363636 15.091997098
#> 43 parent 37.373737 14.353266603
#> 44 parent 38.383838 13.650695852
#> 45 parent 39.393939 12.982514879
#> 46 parent 40.404040 12.347040357
#> 47 parent 41.414141 11.742671354
#> 48 parent 42.424242 11.167885303
#> 49 parent 43.434343 10.621234162
#> 50 parent 44.444444 10.101340770
#> 51 parent 45.454545 9.606895375
#> 52 parent 46.464646 9.136652336
#> 53 parent 47.474747 8.689426985
#> 54 parent 48.484848 8.264092640
#> 55 parent 49.494949 7.859577770
#> 56 parent 50.505051 7.474863293
#> 57 parent 51.515152 7.108980009
#> 58 parent 52.525253 6.761006160
#> 59 parent 53.535354 6.430065106
#> 60 parent 54.545455 6.115323117
#> 61 parent 55.555556 5.815987274
#> 62 parent 56.565657 5.531303470
#> 63 parent 57.575758 5.260554508
#> 64 parent 58.585859 5.003058299
#> 65 parent 59.595960 4.758166141
#> 66 parent 60.606061 4.525261085
#> 67 parent 61.616162 4.303756381
#> 68 parent 62.000000 4.222456793
#> 69 parent 62.626263 4.093093997
#> 70 parent 63.636364 3.892743220
#> 71 parent 64.646465 3.702199310
#> 72 parent 65.656566 3.520982238
#> 73 parent 66.666667 3.348635468
#> 74 parent 67.676768 3.184724813
#> 75 parent 68.686869 3.028837337
#> 76 parent 69.696970 2.880580317
#> 77 parent 70.707071 2.739580256
#> 78 parent 71.717172 2.605481934
#> 79 parent 72.727273 2.477947523
#> 80 parent 73.737374 2.356655730
#> 81 parent 74.747475 2.241300986
#> 82 parent 75.757576 2.131592683
#> 83 parent 76.767677 2.027254437
#> 84 parent 77.777778 1.928023390
#> 85 parent 78.787879 1.833649553
#> 86 parent 79.797980 1.743895173
#> 87 parent 80.808081 1.658534134
#> 88 parent 81.818182 1.577351390
#> 89 parent 82.828283 1.500142419
#> 90 parent 83.838384 1.426712710
#> 91 parent 84.848485 1.356877275
#> 92 parent 85.858586 1.290460179
#> 93 parent 86.868687 1.227294099
#> 94 parent 87.878788 1.167219904
#> 95 parent 88.888889 1.110086250
#> 96 parent 89.898990 1.055749203
#> 97 parent 90.909091 1.004071872
#> 98 parent 91.919192 0.954924068
#> 99 parent 92.929293 0.908181975
#> 100 parent 93.939394 0.863727837
#> 101 parent 94.949495 0.821449662
#> 102 parent 95.959596 0.781240940
#> 103 parent 96.969697 0.743000375
#> 104 parent 97.979798 0.706631627
#> 105 parent 98.989899 0.672043075
#> 106 parent 100.000000 0.639147580
#> 107 A1 0.000000 0.000000000
#> 108 A1 1.000000 1.685461006
#> 109 A1 1.010101 1.701940789
#> 110 A1 2.020202 3.296791533
#> 111 A1 3.000000 4.746752202
#> 112 A1 3.030303 4.790126465
#> 113 A1 4.040404 6.187242320
#> 114 A1 5.050505 7.493171988
#> 115 A1 6.060606 8.712697491
#> 116 A1 7.000000 9.773298725
#> 117 A1 7.070707 9.850362326
#> 118 A1 8.080808 10.910483202
#> 119 A1 9.090909 11.897161206
#> 120 A1 10.101010 12.814292412
#> 121 A1 11.111111 13.665577981
#> 122 A1 12.121212 14.454533757
#> 123 A1 13.131313 15.184499397
#> 124 A1 14.000000 15.767512526
#> 125 A1 14.141414 15.858647054
#> 126 A1 15.151515 16.479989628
#> 127 A1 16.161616 17.051388624
#> 128 A1 17.171717 17.575561608
#> 129 A1 18.181818 18.055089316
#> 130 A1 19.191919 18.492422399
#> 131 A1 20.202020 18.889887843
#> 132 A1 21.212121 19.249695079
#> 133 A1 22.222222 19.573941783
#> 134 A1 23.232323 19.864619397
#> 135 A1 24.242424 20.123618383
#> 136 A1 25.252525 20.352733211
#> 137 A1 26.262626 20.553667106
#> 138 A1 27.272727 20.728036563
#> 139 A1 28.282828 20.877375640
#> 140 A1 29.292929 21.003140039
#> 141 A1 30.000000 21.077890710
#> 142 A1 30.303030 21.106710984
#> 143 A1 31.313131 21.189398917
#> 144 A1 32.323232 21.252447002
#> 145 A1 33.333333 21.297034466
#> 146 A1 34.343434 21.324279770
#> 147 A1 35.353535 21.335243623
#> 148 A1 36.363636 21.330931858
#> 149 A1 37.373737 21.312298151
#> 150 A1 38.383838 21.280246621
#> 151 A1 39.393939 21.235634295
#> 152 A1 40.404040 21.179273450
#> 153 A1 41.414141 21.111933845
#> 154 A1 42.424242 21.034344838
#> 155 A1 43.434343 20.947197407
#> 156 A1 44.444444 20.851146060
#> 157 A1 45.454545 20.746810660
#> 158 A1 46.464646 20.634778158
#> 159 A1 47.474747 20.515604239
#> 160 A1 48.484848 20.389814887
#> 161 A1 49.494949 20.257907875
#> 162 A1 50.505051 20.120354180
#> 163 A1 51.515152 19.977599327
#> 164 A1 52.525253 19.830064674
#> 165 A1 53.535354 19.678148618
#> 166 A1 54.545455 19.522227762
#> 167 A1 55.555556 19.362658007
#> 168 A1 56.565657 19.199775600
#> 169 A1 57.575758 19.033898126
#> 170 A1 58.585859 18.865325451
#> 171 A1 59.595960 18.694340625
#> 172 A1 60.606061 18.521210729
#> 173 A1 61.616162 18.346187688
#> 174 A1 62.000000 18.279232408
#> 175 A1 62.626263 18.169509043
#> 176 A1 63.636364 17.991398686
#> 177 A1 64.646465 17.812067549
#> 178 A1 65.656566 17.631714275
#> 179 A1 66.666667 17.450525840
#> 180 A1 67.676768 17.268678156
#> 181 A1 68.686869 17.086336636
#> 182 A1 69.696970 16.903656738
#> 183 A1 70.707071 16.720784474
#> 184 A1 71.717172 16.537856901
#> 185 A1 72.727273 16.355002582
#> 186 A1 73.737374 16.172342031
#> 187 A1 74.747475 15.989988127
#> 188 A1 75.757576 15.808046514
#> 189 A1 76.767677 15.626615980
#> 190 A1 77.777778 15.445788814
#> 191 A1 78.787879 15.265651148
#> 192 A1 79.797980 15.086283284
#> 193 A1 80.808081 14.907759996
#> 194 A1 81.818182 14.730150830
#> 195 A1 82.828283 14.553520376
#> 196 A1 83.838384 14.377928535
#> 197 A1 84.848485 14.203430771
#> 198 A1 85.858586 14.030078345
#> 199 A1 86.868687 13.857918547
#> 200 A1 87.878788 13.686994907
#> 201 A1 88.888889 13.517347398
#> 202 A1 89.898990 13.349012635
#> 203 A1 90.909091 13.182024056
#> 204 A1 91.919192 13.016412097
#> 205 A1 92.929293 12.852204356
#> 206 A1 93.939394 12.689425755
#> 207 A1 94.949495 12.528098688
#> 208 A1 95.959596 12.368243159
#> 209 A1 96.969697 12.209876925
#> 210 A1 97.979798 12.053015616
#> 211 A1 98.989899 11.897672861
#> 212 A1 100.000000 11.743860400
#> 213 B1 0.000000 0.000000000
#> 214 B1 1.000000 0.862762059
#> 215 B1 1.010101 0.871177048
#> 216 B1 2.020202 1.683497848
#> 217 B1 3.000000 2.418226457
#> 218 B1 3.030303 2.440145075
#> 219 B1 4.040404 3.144139999
#> 220 B1 5.050505 3.798350490
#> 221 B1 6.060606 4.405498633
#> 222 B1 7.000000 4.930176837
#> 223 B1 7.070707 4.968167964
#> 224 B1 8.080808 5.488810347
#> 225 B1 9.090909 5.969752521
#> 226 B1 10.101010 6.413202316
#> 227 B1 11.111111 6.821254568
#> 228 B1 12.121212 7.195896744
#> 229 B1 13.131313 7.539014282
#> 230 B1 14.000000 7.810248132
#> 231 B1 14.141414 7.852395679
#> 232 B1 15.151515 8.137737320
#> 233 B1 16.161616 8.396648072
#> 234 B1 17.171717 8.630653651
#> 235 B1 18.181818 8.841200774
#> 236 B1 19.191919 9.029661109
#> 237 B1 20.202020 9.197335022
#> 238 B1 21.212121 9.345455150
#> 239 B1 22.222222 9.475189788
#> 240 B1 23.232323 9.587646116
#> 241 B1 24.242424 9.683873262
#> 242 B1 25.252525 9.764865214
#> 243 B1 26.262626 9.831563593
#> 244 B1 27.272727 9.884860284
#> 245 B1 28.282828 9.925599936
#> 246 B1 29.292929 9.954582344
#> 247 B1 30.000000 9.968281596
#> 248 B1 30.303030 9.972564708
#> 249 B1 31.313131 9.980263783
#> 250 B1 32.323232 9.978357919
#> 251 B1 33.333333 9.967489009
#> 252 B1 34.343434 9.948264327
#> 253 B1 35.353535 9.921258285
#> 254 B1 36.363636 9.887014102
#> 255 B1 37.373737 9.846045383
#> 256 B1 38.383838 9.798837632
#> 257 B1 39.393939 9.745849674
#> 258 B1 40.404040 9.687515023
#> 259 B1 41.414141 9.624243169
#> 260 B1 42.424242 9.556420809
#> 261 B1 43.434343 9.484413012
#> 262 B1 44.444444 9.408564328
#> 263 B1 45.454545 9.329199843
#> 264 B1 46.464646 9.246626179
#> 265 B1 47.474747 9.161132446
#> 266 B1 48.484848 9.072991146
#> 267 B1 49.494949 8.982459028
#> 268 B1 50.505051 8.889777910
#> 269 B1 51.515152 8.795175451
#> 270 B1 52.525253 8.698865886
#> 271 B1 53.535354 8.601050726
#> 272 B1 54.545455 8.501919425
#> 273 B1 55.555556 8.401650008
#> 274 B1 56.565657 8.300409672
#> 275 B1 57.575758 8.198355355
#> 276 B1 58.585859 8.095634277
#> 277 B1 59.595960 7.992384454
#> 278 B1 60.606061 7.888735183
#> 279 B1 61.616162 7.784807509
#> 280 B1 62.000000 7.745265792
#> 281 B1 62.626263 7.680714664
#> 282 B1 63.636364 7.576562482
#> 283 B1 64.646465 7.472449799
#> 284 B1 65.656566 7.368468826
#> 285 B1 66.666667 7.264705509
#> 286 B1 67.676768 7.161239868
#> 287 B1 68.686869 7.058146319
#> 288 B1 69.696970 6.955493978
#> 289 B1 70.707071 6.853346953
#> 290 B1 71.717172 6.751764620
#> 291 B1 72.727273 6.650801882
#> 292 B1 73.737374 6.550509419
#> 293 B1 74.747475 6.450933922
#> 294 B1 75.757576 6.352118318
#> 295 B1 76.767677 6.254101979
#> 296 B1 77.777778 6.156920928
#> 297 B1 78.787879 6.060608023
#> 298 B1 79.797980 5.965193142
#> 299 B1 80.808081 5.870703355
#> 300 B1 81.818182 5.777163083
#> 301 B1 82.828283 5.684594257
#> 302 B1 83.838384 5.593016458
#> 303 B1 84.848485 5.502447062
#> 304 B1 85.858586 5.412901366
#> 305 B1 86.868687 5.324392718
#> 306 B1 87.878788 5.236932630
#> 307 B1 88.888889 5.150530889
#> 308 B1 89.898990 5.065195670
#> 309 B1 90.909091 4.980933628
#> 310 B1 91.919192 4.897749999
#> 311 B1 92.929293 4.815648688
#> 312 B1 93.939394 4.734632351
#> 313 B1 94.949495 4.654702481
#> 314 B1 95.959596 4.575859481
#> 315 B1 96.969697 4.498102737
#> 316 B1 97.979798 4.421430686
#> 317 B1 98.989899 4.345840882
#> 318 B1 100.000000 4.271330056
#> 319 C1 0.000000 0.000000000
#> 320 C1 1.000000 1.829645786
#> 321 C1 1.010101 1.847087763
#> 322 C1 2.020202 3.492133303
#> 323 C1 3.000000 4.910531064
#> 324 C1 3.030303 4.951772742
#> 325 C1 4.040404 6.241420142
#> 326 C1 5.050505 7.375351980
#> 327 C1 6.060606 8.366785999
#> 328 C1 7.000000 9.171671206
#> 329 C1 7.070707 9.227954769
#> 330 C1 8.080808 9.970174354
#> 331 C1 9.090909 10.603908370
#> 332 C1 10.101010 11.138827767
#> 333 C1 11.111111 11.583866567
#> 334 C1 12.121212 11.947273869
#> 335 C1 13.131313 12.236662337
#> 336 C1 14.000000 12.431704739
#> 337 C1 14.141414 12.459053419
#> 338 C1 15.151515 12.620919488
#> 339 C1 16.161616 12.728223141
#> 340 C1 17.171717 12.786453805
#> 341 C1 18.181818 12.800661859
#> 342 C1 19.191919 12.775490422
#> 343 C1 20.202020 12.715204956
#> 344 C1 21.212121 12.623720845
#> 345 C1 22.222222 12.504629065
#> 346 C1 23.232323 12.361220091
#> 347 C1 24.242424 12.196506142
#> 348 C1 25.252525 12.013241882
#> 349 C1 26.262626 11.813943686
#> 350 C1 27.272727 11.600907551
#> 351 C1 28.282828 11.376225763
#> 352 C1 29.292929 11.141802382
#> 353 C1 30.000000 10.972842888
#> 354 C1 30.303030 10.899367648
#> 355 C1 31.313131 10.650491354
#> 356 C1 32.323232 10.396595286
#> 357 C1 33.333333 10.138964763
#> 358 C1 34.343434 9.878759358
#> 359 C1 35.353535 9.617022857
#> 360 C1 36.363636 9.354692485
#> 361 C1 37.373737 9.092607481
#> 362 C1 38.383838 8.831517041
#> 363 C1 39.393939 8.572087685
#> 364 C1 40.404040 8.314910084
#> 365 C1 41.414141 8.060505385
#> 366 C1 42.424242 7.809331068
#> 367 C1 43.434343 7.561786371
#> 368 C1 44.444444 7.318217302
#> 369 C1 45.454545 7.078921287
#> 370 C1 46.464646 6.844151456
#> 371 C1 47.474747 6.614120611
#> 372 C1 48.484848 6.389004885
#> 373 C1 49.494949 6.168947129
#> 374 C1 50.505051 5.954060026
#> 375 C1 51.515152 5.744428970
#> 376 C1 52.525253 5.540114721
#> 377 C1 53.535354 5.341155842
#> 378 C1 54.545455 5.147570951
#> 379 C1 55.555556 4.959360784
#> 380 C1 56.565657 4.776510102
#> 381 C1 57.575758 4.598989433
#> 382 C1 58.585859 4.426756673
#> 383 C1 59.595960 4.259758556
#> 384 C1 60.606061 4.097932000
#> 385 C1 61.616162 3.941205338
#> 386 C1 62.000000 3.882970158
#> 387 C1 62.626263 3.789499444
#> 388 C1 63.636364 3.642728760
#> 389 C1 64.646465 3.500802233
#> 390 C1 65.656566 3.363624171
#> 391 C1 66.666667 3.231095021
#> 392 C1 67.676768 3.103112069
#> 393 C1 68.686869 2.979570086
#> 394 C1 69.696970 2.860361903
#> 395 C1 70.707071 2.745378939
#> 396 C1 71.717172 2.634511667
#> 397 C1 72.727273 2.527650041
#> 398 C1 73.737374 2.424683880
#> 399 C1 74.747475 2.325503203
#> 400 C1 75.757576 2.229998536
#> 401 C1 76.767677 2.138061182
#> 402 C1 77.777778 2.049583458
#> 403 C1 78.787879 1.964458908
#> 404 C1 79.797980 1.882582485
#> 405 C1 80.808081 1.803850715
#> 406 C1 81.818182 1.728161832
#> 407 C1 82.828283 1.655415900
#> 408 C1 83.838384 1.585514911
#> 409 C1 84.848485 1.518362874
#> 410 C1 85.858586 1.453865880
#> 411 C1 86.868687 1.391932162
#> 412 C1 87.878788 1.332472134
#> 413 C1 88.888889 1.275398429
#> 414 C1 89.898990 1.220625918
#> 415 C1 90.909091 1.168071723
#> 416 C1 91.919192 1.117655227
#> 417 C1 92.929293 1.069298066
#> 418 C1 93.939394 1.022924125
#> 419 C1 94.949495 0.978459525
#> 420 C1 95.959596 0.935832597
#> 421 C1 96.969697 0.894973866
#> 422 C1 97.979798 0.855816021
#> 423 C1 98.989899 0.818293881
#> 424 C1 100.000000 0.782344364
#> 425 A2 0.000000 0.000000000
#> 426 A2 1.000000 0.005272357
#> 427 A2 1.010101 0.005377817
#> 428 A2 2.020202 0.020885524
#> 429 A2 3.000000 0.044759575
#> 430 A2 3.030303 0.045628064
#> 431 A2 4.040404 0.078765936
#> 432 A2 5.050505 0.119512155
#> 433 A2 6.060606 0.167129381
#> 434 A2 7.000000 0.216973934
#> 435 A2 7.070707 0.220927189
#> 436 A2 8.080808 0.280259484
#> 437 A2 9.090909 0.344522046
#> 438 A2 10.101010 0.413150206
#> 439 A2 11.111111 0.485616641
#> 440 A2 12.121212 0.561429288
#> 441 A2 13.131313 0.640129357
#> 442 A2 14.000000 0.709794102
#> 443 A2 14.141414 0.721289460
#> 444 A2 15.151515 0.804511827
#> 445 A2 16.161616 0.889426625
#> 446 A2 17.171717 0.975690359
#> 447 A2 18.181818 1.062984358
#> 448 A2 19.191919 1.151013342
#> 449 A2 20.202020 1.239504068
#> 450 A2 21.212121 1.328204041
#> 451 A2 22.222222 1.416880297
#> 452 A2 23.232323 1.505318253
#> 453 A2 24.242424 1.593320615
#> 454 A2 25.252525 1.680706344
#> 455 A2 26.262626 1.767309680
#> 456 A2 27.272727 1.852979219
#> 457 A2 28.282828 1.937577034
#> 458 A2 29.292929 2.020977853
#> 459 A2 30.000000 2.078585030
#> 460 A2 30.303030 2.103068270
#> 461 A2 31.313131 2.183746011
#> 462 A2 32.323232 2.262919231
#> 463 A2 33.333333 2.340505852
#> 464 A2 34.343434 2.416432940
#> 465 A2 35.353535 2.490636111
#> 466 A2 36.363636 2.563058979
#> 467 A2 37.373737 2.633652622
#> 468 A2 38.383838 2.702375089
#> 469 A2 39.393939 2.769190926
#> 470 A2 40.404040 2.834070737
#> 471 A2 41.414141 2.896990764
#> 472 A2 42.424242 2.957932489
#> 473 A2 43.434343 3.016882265
#> 474 A2 44.444444 3.073830964
#> 475 A2 45.454545 3.128773647
#> 476 A2 46.464646 3.181709250
#> 477 A2 47.474747 3.232640290
#> 478 A2 48.484848 3.281572591
#> 479 A2 49.494949 3.328515022
#> 480 A2 50.505051 3.373479253
#> 481 A2 51.515152 3.416479521
#> 482 A2 52.525253 3.457532417
#> 483 A2 53.535354 3.496656681
#> 484 A2 54.545455 3.533873012
#> 485 A2 55.555556 3.569203883
#> 486 A2 56.565657 3.602673379
#> 487 A2 57.575758 3.634307034
#> 488 A2 58.585859 3.664131686
#> 489 A2 59.595960 3.692175334
#> 490 A2 60.606061 3.718467012
#> 491 A2 61.616162 3.743036663
#> 492 A2 62.000000 3.751927986
#> 493 A2 62.626263 3.765915028
#> 494 A2 63.636364 3.787133539
#> 495 A2 64.646465 3.806724217
#> 496 A2 65.656566 3.824719582
#> 497 A2 66.666667 3.841152565
#> 498 A2 67.676768 3.856056426
#> 499 A2 68.686869 3.869464684
#> 500 A2 69.696970 3.881411040
#> 501 A2 70.707071 3.891929316
#> 502 A2 71.717172 3.901053396
#> 503 A2 72.727273 3.908817168
#> 504 A2 73.737374 3.915254472
#> 505 A2 74.747475 3.920399054
#> 506 A2 75.757576 3.924284521
#> 507 A2 76.767677 3.926944303
#> 508 A2 77.777778 3.928411610
#> 509 A2 78.787879 3.928719404
#> 510 A2 79.797980 3.927900364
#> 511 A2 80.808081 3.925986861
#> 512 A2 81.818182 3.923010926
#> 513 A2 82.828283 3.919004234
#> 514 A2 83.838384 3.913998077
#> 515 A2 84.848485 3.908023347
#> 516 A2 85.858586 3.901110518
#> 517 A2 86.868687 3.893289633
#> 518 A2 87.878788 3.884590288
#> 519 A2 88.888889 3.875041619
#> 520 A2 89.898990 3.864672297
#> 521 A2 90.909091 3.853510511
#> 522 A2 91.919192 3.841583970
#> 523 A2 92.929293 3.828919886
#> 524 A2 93.939394 3.815544978
#> 525 A2 94.949495 3.801485462
#> 526 A2 95.959596 3.786767051
#> 527 A2 96.969697 3.771414951
#> 528 A2 97.979798 3.755453860
#> 529 A2 98.989899 3.738907968
#> 530 A2 100.000000 3.721800959
#>
#> $cost
#> function (P)
#> {
#> assign("calls", calls + 1, inherits = TRUE)
#> if (trace_parms)
#> cat(P, "\n")
#> if (length(state.ini.optim) > 0) {
#> odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed)
#> names(odeini) <- c(state.ini.optim.boxnames, state.ini.fixed.boxnames)
#> }
#> else {
#> odeini <- state.ini.fixed
#> names(odeini) <- state.ini.fixed.boxnames
#> }
#> odeparms <- c(P[(length(state.ini.optim) + 1):length(P)],
#> transparms.fixed)
#> parms <- backtransform_odeparms(odeparms, mkinmod, transform_rates = transform_rates,
#> transform_fractions = transform_fractions)
#> out <- mkinpredict(mkinmod, parms, odeini, outtimes, solution_type = solution_type,
#> use_compiled = use_compiled, method.ode = method.ode,
#> atol = atol, rtol = rtol, ...)
#> assign("out_predicted", out, inherits = TRUE)
#> mC <- modCost(out, observed, y = "value", err = err, weight = weight,
#> scaleVar = scaleVar)
#> if (mC$model < cost.old) {
#> if (!quiet)
#> cat("Model cost at call ", calls, ": ", mC$model,
#> "\n")
#> if (plot) {
#> outtimes_plot = seq(min(observed$time), max(observed$time),
#> length.out = 100)
#> out_plot <- mkinpredict(mkinmod, parms, odeini, outtimes_plot,
#> solution_type = solution_type, use_compiled = use_compiled,
#> method.ode = method.ode, atol = atol, rtol = rtol,
#> ...)
#> plot(0, type = "n", xlim = range(observed$time),
#> ylim = c(0, max(observed$value, na.rm = TRUE)),
#> xlab = "Time", ylab = "Observed")
#> col_obs <- pch_obs <- 1:length(obs_vars)
#> lty_obs <- rep(1, length(obs_vars))
#> names(col_obs) <- names(pch_obs) <- names(lty_obs) <- obs_vars
#> for (obs_var in obs_vars) {
#> points(subset(observed, name == obs_var, c(time,
#> value)), pch = pch_obs[obs_var], col = col_obs[obs_var])
#> }
#> matlines(out_plot$time, out_plot[-1], col = col_obs,
#> lty = lty_obs)
#> legend("topright", inset = c(0.05, 0.05), legend = obs_vars,
#> col = col_obs, pch = pch_obs, lty = 1:length(pch_obs))
#> }
#> assign("cost.old", mC$model, inherits = TRUE)
#> }
#> return(mC)
#> }
#> <environment: 0x36a83b0>
#>
#> $cost_notrans
#> function (P)
#> {
#> if (length(state.ini.optim) > 0) {
#> odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed)
#> names(odeini) <- c(state.ini.optim.boxnames, state.ini.fixed.boxnames)
#> }
#> else {
#> odeini <- state.ini.fixed
#> names(odeini) <- state.ini.fixed.boxnames
#> }
#> odeparms <- c(P[(length(state.ini.optim) + 1):length(P)],
#> parms.fixed)
#> out <- mkinpredict(mkinmod, odeparms, odeini, outtimes, solution_type = solution_type,
#> use_compiled = use_compiled, method.ode = method.ode,
#> atol = atol, rtol = rtol, ...)
#> mC <- modCost(out, observed, y = "value", err = err, weight = weight,
#> scaleVar = scaleVar)
#> return(mC)
#> }
#> <environment: 0x36a83b0>
#>
#> $hessian_notrans
#> parent_0 k_parent k_A1 k_B1
#> parent_0 7.365081 -1854.5113 -7.186039e+02 -1.307858e+02
#> k_parent -1854.511330 2686790.7676 -6.235542e+04 -1.429363e+04
#> k_A1 -718.603865 -62355.4211 3.128242e+06 0.000000e+00
#> k_B1 -130.785796 -14293.6348 0.000000e+00 4.545506e+05
#> k_C1 -76.404274 -38575.9391 1.190516e-02 -9.422820e-04
#> k_A2 -17.933942 -4390.5079 -5.838973e+04 0.000000e+00
#> f_parent_to_A1 75.150866 43257.2599 -1.733841e+05 0.000000e+00
#> f_parent_to_B1 29.265575 17940.1132 0.000000e+00 -6.150198e+04
#> f_parent_to_C1 20.661354 19692.5582 -6.146186e-05 -1.990817e-03
#> f_A1_to_A2 1.593279 597.0744 5.849840e+03 0.000000e+00
#> k_C1 k_A2 f_parent_to_A1 f_parent_to_B1
#> parent_0 -7.640427e+01 -1.793394e+01 7.515087e+01 2.926558e+01
#> k_parent -3.857594e+04 -4.390508e+03 4.325726e+04 1.794011e+04
#> k_A1 1.190516e-02 -5.838973e+04 -1.733841e+05 0.000000e+00
#> k_B1 -9.422820e-04 0.000000e+00 0.000000e+00 -6.150198e+04
#> k_C1 8.855106e+04 4.105787e-04 -1.354551e-03 5.852620e-04
#> k_A2 4.105787e-04 4.649850e+04 -4.327086e+03 0.000000e+00
#> f_parent_to_A1 -1.354551e-03 -4.327086e+03 1.813234e+04 0.000000e+00
#> f_parent_to_B1 5.852620e-04 0.000000e+00 0.000000e+00 1.376213e+04
#> f_parent_to_C1 -1.658031e+04 2.903794e-04 1.946385e-03 1.325258e-03
#> f_A1_to_A2 -4.367402e-05 -3.679910e+03 3.844249e+02 0.000000e+00
#> f_parent_to_C1 f_A1_to_A2
#> parent_0 2.066135e+01 1.593279e+00
#> k_parent 1.969256e+04 5.970744e+02
#> k_A1 -6.146186e-05 5.849840e+03
#> k_B1 -1.990817e-03 0.000000e+00
#> k_C1 -1.658031e+04 -4.367402e-05
#> k_A2 2.903794e-04 -3.679910e+03
#> f_parent_to_A1 1.946385e-03 3.844249e+02
#> f_parent_to_B1 1.325258e-03 0.000000e+00
#> f_parent_to_C1 4.483759e+03 -3.796730e-05
#> f_A1_to_A2 -3.796730e-05 3.269288e+02
#>
#> $start
#> value type
#> parent_0 93.2000000 state
#> k_parent 0.1000000 deparm
#> k_A1 0.1001000 deparm
#> k_B1 0.1002000 deparm
#> k_C1 0.1003000 deparm
#> k_A2 0.1004000 deparm
#> f_parent_to_A1 0.3333333 deparm
#> f_parent_to_B1 0.3333333 deparm
#> f_parent_to_C1 0.3333333 deparm
#> f_A1_to_A2 0.5000000 deparm
#>
#> $start_transformed
#> value lower upper
#> parent_0 93.200000 -Inf Inf
#> log_k_parent -2.302585 -Inf Inf
#> log_k_A1 -2.301586 -Inf Inf
#> log_k_B1 -2.300587 -Inf Inf
#> log_k_C1 -2.299590 -Inf Inf
#> log_k_A2 -2.298593 -Inf Inf
#> f_parent_ilr_1 0.000000 -Inf Inf
#> f_parent_ilr_2 0.000000 -Inf Inf
#> f_A1_ilr_1 0.000000 -Inf Inf
#>
#> $fixed
#> value type
#> A1_0 0 state
#> B1_0 0 state
#> C1_0 0 state
#> A2_0 0 state
#>
#> $data
#> time variable observed predicted residual
#> 1 0 parent 93.20 91.918159794 1.2818402
#> 2 1 parent 89.40 87.462788491 1.9372115
#> 3 3 parent 79.70 79.189448055 0.5105519
#> 4 7 parent 61.10 64.916531757 -3.8165318
#> 5 14 parent 48.20 45.846828365 2.3531716
#> 6 30 parent 15.90 20.704334210 -4.8043342
#> 7 62 parent 6.50 4.222456793 2.2775432
#> 8 100 parent 6.00 0.639147580 5.3608524
#> 9 0 A1 NA 0.000000000 NA
#> 10 1 A1 NA 1.685461006 NA
#> 11 3 A1 0.55 4.746752202 -4.1967522
#> 12 7 A1 6.87 9.773298725 -2.9032987
#> 13 14 A1 17.08 15.767512526 1.3124875
#> 14 30 A1 21.68 21.077890710 0.6021093
#> 15 62 A1 15.77 18.279232408 -2.5092324
#> 16 100 A1 13.63 11.743860400 1.8861396
#> 17 0 B1 NA 0.000000000 NA
#> 18 1 B1 NA 0.862762059 NA
#> 19 3 B1 NA 2.418226457 NA
#> 20 7 B1 0.55 4.930176837 -4.3801768
#> 21 14 B1 2.31 7.810248132 -5.5002481
#> 22 30 B1 15.76 9.968281596 5.7917184
#> 23 62 B1 6.36 7.745265792 -1.3852658
#> 24 100 B1 3.74 4.271330056 -0.5313301
#> 25 0 C1 NA 0.000000000 NA
#> 26 1 C1 0.55 1.829645786 -1.2796458
#> 27 3 C1 3.20 4.910531064 -1.7105311
#> 28 7 C1 5.46 9.171671206 -3.7116712
#> 29 14 C1 12.55 12.431704739 0.1182953
#> 30 30 C1 10.45 10.972842888 -0.5228429
#> 31 62 C1 4.74 3.882970158 0.8570298
#> 32 100 C1 4.33 0.782344364 3.5476556
#> 33 0 A2 NA 0.000000000 NA
#> 34 1 A2 0.55 0.005272357 0.5447276
#> 35 3 A2 1.41 0.044759575 1.3652404
#> 36 7 A2 0.55 0.216973934 0.3330261
#> 37 14 A2 1.29 0.709794102 0.5802059
#> 38 30 A2 1.95 2.078585030 -0.1285850
#> 39 62 A2 3.54 3.751927986 -0.2119280
#> 40 100 A2 3.86 3.721800959 0.1381990
#>
#> $atol
#> [1] 1e-08
#>
#> $rtol
#> [1] 1e-10
#>
#> $weight.ini
#> [1] "none"
#>
#> $reweight.tol
#> [1] 1e-08
#>
#> $reweight.max.iter
#> [1] 10
#>
#> $bparms.optim
#> parent_0 k_parent k_A1 k_B1 k_C1
#> 91.91815979 0.04968519 0.01393165 0.01859846 0.06171564
#> k_A2 f_parent_to_A1 f_parent_to_B1 f_parent_to_C1 f_A1_to_A2
#> 0.02431549 0.38096192 0.19546676 0.42357132 0.44796066
#>
#> $bparms.fixed
#> A1_0 B1_0 C1_0 A2_0
#> 0 0 0 0
#>
#> $bparms.ode
#> k_parent f_parent_to_A1 f_parent_to_B1 f_parent_to_C1 k_A1
#> 0.04968519 0.38096192 0.19546676 0.42357132 0.01393165
#> f_A1_to_A2 k_B1 k_C1 k_A2
#> 0.44796066 0.01859846 0.06171564 0.02431549
#>
#> $bparms.state
#> parent A1 B1 C1 A2
#> 91.91816 0.00000 0.00000 0.00000 0.00000
#>
#> $date
#> [1] "Fri Nov 18 15:20:45 2016"
#>
#> attr(,"class")
#> [1] "mkinfit" "modFit" </div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="sidebar">
<h2>Contents</h2>
<ul class="nav nav-pills nav-stacked">
<li><a href="#format">Format</a></li>
<li><a href="#references">References</a></li>
<li><a href="#examples">Examples</a></li>
</ul>
</div>
</div>
<footer>
<div class="copyright">
<p>Developed by Johannes Ranke.</p>
</div>
<div class="pkgdown">
<p>Site built with <a href="http://hadley.github.io/pkgdown/">pkgdown</a>.</p>
</div>
</footer>
</div>
</body>
</html>
|