1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
---
title: "Hierarchical kinetic modelling of degradation data"
author:
date:
output: mkin::hierarchical_kinetics
geometry: margin=2cm
---
\clearpage
# Setup
```{r packages, cache = FALSE, message = FALSE}
library(mkin)
library(knitr)
library(saemix)
library(parallel)
library(readxl)
```
```{r n_cores, cache = FALSE}
n_cores <- detectCores()
if (Sys.info()["sysname"] == "Windows") {
cl <- makePSOCKcluster(n_cores)
} else {
cl <- makeForkCluster(n_cores)
}
```
\clearpage
# Introduction
This report shows hierarchical kinetic modelling for ...
The data were obtained from ...
```{r ds}
data_path <- system.file(
"testdata", "lambda-cyhalothrin_soil_efsa_2014.xlsx",
package = "mkin")
ds <- read_spreadsheet(data_path, valid_datasets = c(1:4, 7:13))
covariates <- attr(ds, "covariates")
```
The covariate data are shown below.
```{r results = "asis", dependson = "ds", echo = FALSE}
kable(covariates, caption = "Covariate data for all datasets")
```
\clearpage
The datasets with the residue time series are shown in the tables below. Please
refer to the spreadsheet for details like data sources, treatment of values
below reporting limits and time step normalisation factors.
```{r results = "asis", dependson = "ds", echo = FALSE}
for (ds_name in names(ds)) {
print(
kable(mkin_long_to_wide(ds[[ds_name]]),
caption = paste("Dataset", ds_name),
booktabs = TRUE, row.names = FALSE))
cat("\n\\clearpage\n")
}
```
# Parent only evaluations
The following code performs separate fits of the candidate degradation models
to all datasets using constant variance and the two-component error model.
```{r parent-sep, dependson = "ds"}
parent_deg_mods <- c("SFO", "FOMC", "DFOP", "SFORB")
errmods <- c(const = "constant variance", tc = "two-component error")
parent_sep_const <- mmkin(
parent_deg_mods, ds,
error_model = "const",
cluster = cl, quiet = TRUE)
parent_sep_tc <- update(parent_sep_const, error_model = "tc")
```
To select the parent model, the corresponding hierarchical fits are performed below.
```{r parent-mhmkin, dependson = "parent-sep"}
parent_mhmkin <- mhmkin(list(parent_sep_const, parent_sep_tc), cluster = cl)
status(parent_mhmkin) |> kable()
```
All fits terminate without errors (status OK). The check for ill-defined
parameters shows that not all random effect parameters can be robustly
quantified.
```{r dependson = "parent_mhmkin"}
illparms(parent_mhmkin) |> kable()
```
Therefore, the fits are updated, excluding random effects that were
ill-defined according to the `illparms` function. The status of the fits
is checked.
```{r parent-mhmkin-refined}
parent_mhmkin_refined <- update(parent_mhmkin,
no_random_effect = illparms(parent_mhmkin))
status(parent_mhmkin_refined) |> kable()
```
Also, it is checked if the AIC values of the refined fits are actually smaller
than the AIC values of the original fits.
```{r dependson = "parent-mhmkin-refined"}
(AIC(parent_mhmkin_refined) < AIC(parent_mhmkin)) |> kable()
```
From the refined fits, the most suitable model is selected using the AIC.
```{r parent-best, dependson = "parent-mhmkin"}
aic_parent <- AIC(parent_mhmkin_refined)
min_aic <- which(aic_parent == min(aic_parent), arr.ind = TRUE)
best_degmod_parent <- rownames(aic_parent)[min_aic[1]]
best_errmod_parent <- colnames(aic_parent)[min_aic[2]]
anova(parent_mhmkin_refined) |> kable(digits = 1)
parent_best <- parent_mhmkin_refined[[best_degmod_parent, best_errmod_parent]]
```
Based on the AIC, the combination of the `r best_degmod_parent` degradation
model with the error model `r errmods[best_errmod_parent]` is identified to
be most suitable for the degradation of the parent. The check below
confirms that no ill-defined parameters remain for this combined model.
```{r dependson = "parent-best"}
illparms(parent_best)
```
The corresponding fit is plotted below.
```{r dependson = "parent-best"}
plot(parent_best)
```
The fitted parameters, together with approximate confidence
intervals are listed below.
```{r dependson = "parent-best"}
parms(parent_best, ci = TRUE) |> kable(digits = 3)
```
As an example of the investigation of covariate influence on degradation
parameters, a covariate model is added to the hierarchical model for each of
the degradation parameters with well-defined random effects. Also,
a version with covariate models for both of them is fitted.
```{r parent-best-pH}
parent_best_pH_1 <- update(parent_best, covariates = covariates,
covariate_models = list(log_k_lambda_free ~ pH))
parent_best_pH_2 <- update(parent_best, covariates = covariates,
covariate_models = list(log_k_lambda_bound_free ~ pH))
parent_best_pH_3 <- update(parent_best, covariates = covariates,
covariate_models = list(log_k_lambda_free ~ pH, log_k_lambda_bound_free ~ pH))
```
The resulting models are compared.
```{r dependson = "parent-best-pH"}
anova(parent_best, parent_best_pH_1, parent_best_pH_2, parent_best_pH_3) |>
kable(digits = 1)
```
The model fit with the lowest AIC is the one with a pH correlation of the
desorption rate constant `k_lambda_bound_free`. Plot and parameter listing
of this fit are shown below. Also, it is confirmed that no ill-defined
variance parameters are found.
```{r dependson = "parent-best-pH"}
plot(parent_best_pH_2)
```
```{r dependson = "parent-best-pH"}
illparms(parent_best_pH_2)
parms(parent_best_pH_2, ci = TRUE) |> kable(digits = 3)
```
\clearpage
# Pathway fits
As an example of a pathway fit, a model with SFORB for the parent compound and
parallel formation of two metabolites is set up.
```{r m_sforb_sfo2}
if (!dir.exists("lambda_dlls")) dir.create("lambda_dlls")
m_sforb_sfo2 = mkinmod(
lambda = mkinsub("SFORB", to = c("c_V", "c_XV")),
c_V = mkinsub("SFO"),
c_XV = mkinsub("SFO"),
name = "sforb_sfo2",
dll_dir = "lambda_dlls",
overwrite = TRUE, quiet = TRUE
)
```
Separate evaluations of all datasets are performed with constant variance
and using two-component error.
```{r path-sep, dependson = c("m_sforb_all", "ds")}
sforb_sep_const <- mmkin(list(sforb_path = m_sforb_sfo2), ds,
cluster = cl, quiet = TRUE)
sforb_sep_tc <- update(sforb_sep_const, error_model = "tc")
```
The separate fits with constant variance are plotted.
```{r dependson = "path-sep", fig.height = 9}
plot(mixed(sforb_sep_const))
```
The two corresponding hierarchical fits, with the random effects for the parent
degradation parameters excluded as discussed above, and including the covariate
model that was identified for the parent degradation, are attempted below.
```{r path-1, dependson = "path-sep"}
path_1 <- mhmkin(list(sforb_sep_const, sforb_sep_tc),
no_random_effect = c("lambda_free_0", "log_k_lambda_free_bound"),
covariates = covariates, covariate_models = list(log_k_lambda_bound_free ~ pH),
cluster = cl)
```
```{r dependson = "path-1"}
status(path_1) |> kable()
```
The status information shows that both fits were successfully completed.
```{r dependson = "path-1"}
anova(path_1) |> kable(digits = 1)
```
Model comparison shows that the two-component error model provides a much
better fit.
```{r dependson = "path-1"}
illparms(path_1[["sforb_path", "tc"]])
```
Two ill-defined variance components are found. Therefore, the fit is
repeated with the corresponding random effects removed.
```{r path-1-refined, dependson = "path-1"}
path_1_refined <- update(path_1[["sforb_path", "tc"]],
no_random_effect = c("lambda_free_0", "log_k_lambda_free_bound",
"log_k_c_XV", "f_lambda_ilr_2"))
```
The empty output of the illparms function indicates that there are no
ill-defined parameters remaining in the refined fit.
```{r dependson = "path-1-refined"}
illparms(path_1_refined)
```
Below, the refined fit is plotted and the fitted parameters are shown together
with their 95% confidence intervals.
```{r dependson = "path-1-refined", fig.height = 9}
plot(path_1_refined)
```
```{r dependson = "path-1-refined", fig.height = 9}
parms(path_1_refined, ci = TRUE) |> kable(digits = 3)
```
\clearpage
# Appendix
## Listings of initial parent fits
```{r listings-parent, results = "asis", echo = FALSE, dependson = "parent_mhmkin"}
for (deg_mod in parent_deg_mods) {
for (err_mod in c("const", "tc")) {
caption <- paste("Hierarchical", deg_mod, "fit with", errmods[err_mod])
tex_listing(parent_mhmkin[[deg_mod, err_mod]], caption)
}
}
```
## Listings of refined parent fits
```{r listings-parent-refined, results = "asis", echo = FALSE, dependson = "parent_mhmkin_refined"}
for (deg_mod in parent_deg_mods) {
for (err_mod in c("const", "tc")) {
caption <- paste("Refined hierarchical", deg_mod, "fit with", errmods[err_mod])
tex_listing(parent_mhmkin_refined[[deg_mod, err_mod]], caption)
}
}
```
## Listings of pathway fits
```{r listings-path-1, results = "asis", echo = FALSE, dependson = "path-1-refined"}
tex_listing(path_1[["sforb_path", "const"]],
caption = "Hierarchical fit of SFORB-SFO2 with constant variance")
tex_listing(path_1[["sforb_path", "tc"]],
caption = "Hierarchical fit of SFORB-SFO2 with two-component error")
tex_listing(path_1_refined,
caption = "Refined hierarchical fit of SFORB-SFO2 with two-component error")
```
## Session info
```{r echo = FALSE, cache = FALSE}
parallel::stopCluster(cl)
sessionInfo()
```
|