aboutsummaryrefslogtreecommitdiff
path: root/man/mkinfit.Rd
blob: a080f8ae44ff87a9347e16e23871c6892420362f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
\name{mkinfit}
\alias{mkinfit}
\title{
  Fit a kinetic model to data with one or more state variables.
}
\description{
  This function uses the Flexible Modelling Environment package
  \code{\link{FME}} to create a function calculating the model cost, which is
  then minimised, using the specified initial or fixed parameters and starting
  values.
}
\usage{
mkinfit(mkinmod, observed, 
  parms.ini = "auto",
  state.ini = c(100, rep(0, length(mkinmod$diffs) - 1)), 
  fixed_parms = NULL, fixed_initials = names(mkinmod$diffs)[-1], 
  solution_type = "auto",
  method.modFit = "Marq",
  control.modFit = list(),
  plot = FALSE, quiet = FALSE, err = NULL, weight = "none", 
  scaleVar = FALSE, 
  atol = 1e-8, rtol = 1e-10, n.outtimes = 100, 
  reweight.method = NULL,
  reweight.tol = 1e-8, reweight.max.iter = 10,
  trace_parms = FALSE, ...)
}
\arguments{
  \item{mkinmod}{
    A list of class \code{\link{mkinmod}}, containing the kinetic model to be fitted to the data.
  }
  \item{observed}{
    The observed data. It has to be in the long format as described in
    \code{\link{modFit}}, i.e. the first column called "name" must contain the name of the
    observed variable for each data point. The second column must contain the
    times of observation, named "time".  The third column must be named "value"
    and contain the observed values. Optionally, a further column can contain
    weights for each data point. If it is not named "err", its name must be
    passed as a further argument named \code{err} which is then passed on to
    \code{\link{modFit}}.
  }
  \item{parms.ini}{
    A named vector of initial values for the parameters, including parameters to
    be optimised and potentially also fixed parameters as indicated by \code{fixed_parms}.
    If set to "auto", initial values for rate constants are set to default values.
    Using parameter names that are not in the model gives an error.

    It is possible to only specify a subset of the parameters that the model
    needs. You can use the parameter lists "bparms.ode" from a previously
    fitted model, which contains the differential equation parameters from this
    model. This works nicely if the models are nested. An example is given
    below.
  }
  \item{state.ini}{
    A named vector of initial values for the state variables of the model. In case the 
    observed variables are represented by more than one model variable, the names will
    differ from the names of the observed variables (see \code{map} component of 
    \code{\link{mkinmod}}). The default is to set the initial value of the first model
    variable to 100 and all others to 0.
  }
  \item{fixed_parms}{
    The names of parameters that should not be optimised but rather kept at the values
    specified in \code{parms.ini}.
  }
  \item{fixed_initials}{
    The names of model variables for which the initial state at time 0 should be excluded
    from the optimisation. Defaults to all state variables except for the first one.
  }
  \item{solution_type}{
    If set to "eigen", the solution of the system of differential equations is based on the 
    spectral decomposition of the coefficient matrix in cases that this is
    possible. If set to "deSolve", a numerical ode solver from package
    \code{\link{deSolve}} is used. If set to "analytical", an analytical solution
    of the model is used. This is only implemented for simple degradation experiments
    with only one state variable, i.e. with no metabolites. The default is "auto", 
    which uses "analytical" if possible, otherwise "eigen" if the model can be expressed
    using eigenvalues and eigenvectors, and finally "deSolve" for the remaining
    models (time dependence of degradation rates and metabolites).
  }
  \item{method.modFit}{
    The optimisation method passed to \code{\link{modFit}}. The default "Marq" is the Levenberg Marquardt
    algorithm \code{\link{nls.lm}} from the package \code{minpack.lm}. Often other methods need
    more iterations to find the same result. When using "Pseudo", "upper" and "lower" need to be 
    specified for the transformed parameters.
  }
  \item{control.modFit}{
    Additional arguments passed to the optimisation method used by \code{\link{modFit}}. 
  }
  \item{plot}{
    Should the observed values and the numerical solutions be plotted at each stage
    of the optimisation?
  }
  \item{quiet}{
    Suppress printing out the current model cost after each improvement?
  }
  \item{err }{either \code{NULL}, or the name of the column with the
    \emph{error} estimates, used to weigh the residuals (see details of
    \code{\link{modCost}}); if \code{NULL}, then the residuals are not weighed.
  }
  \item{weight}{only if \code{err}=\code{NULL}: how to weight the
    residuals, one of "none", "std", "mean", see details of \code{\link{modCost}}.
  }
  \item{scaleVar}{
    Will be passed to \code{\link{modCost}}. Default is not to scale Variables according
    to the number of observations.
  }
  \item{atol}{
    Absolute error tolerance, passed to \code{\link{ode}}. Default is 1e-8,
    lower than in \code{\link{lsoda}}.
  }
  \item{rtol}{
    Absolute error tolerance, passed to \code{\link{ode}}. Default is 1e-10,
    much lower than in \code{\link{lsoda}}.
  }
  \item{n.outtimes}{
    The length of the dataseries that is produced by the model prediction
    function \code{\link{mkinpredict}}. This impacts the accuracy of
    the numerical solver if that is used (see \code{solution} argument. 
    The default value is 100.
  }
  \item{reweight.method}{
    The method used for iteratively reweighting residuals, also known
    as iteratively reweighted least squares (IRLS). Default is NULL,
    the other method implemented is called "obs", meaning that each
    observed variable is assumed to have its own variance, this is 
    estimated from the fit and used for weighting the residuals
    in each iteration until convergence of this estimate up to 
    \code{reweight.tol} or up to the maximum number of iterations
    specified by \code{reweight.maxiter}.
  }
  \item{reweight.tol}{
    Tolerance for convergence criterion for the variance components
    in IRLS fits.
  }
  \item{reweight.max.iter}{
    Maximum iterations in IRLS fits.
  }
  \item{trace_parms}{
    Should a trace of the parameter values be listed?
  }
  \item{\dots}{
    Further arguments that will be passed to \code{\link{modFit}}. 
  }
}
\value{
  A list with "mkinfit" and "modFit" in the class attribute. 
  A summary can be obtained by \code{\link{summary.mkinfit}}. 
}
\note{
  The implementation of iteratively reweighted least squares is inspired by the
  work of the KinGUII team at Bayer Crop Science (Walter Schmitt and Zhenglei
  Gao). A similar implemention can also be found in CAKE 2.0, which is the
  other GUI derivative of mkin, sponsored by Syngenta.
}
\author{
  Johannes Ranke <jranke@uni-bremen.de>
}
\examples{
# One parent compound, one metabolite, both single first order.
SFO_SFO <- mkinmod(
  parent = list(type = "SFO", to = "m1", sink = TRUE),
  m1 = list(type = "SFO"))
# Fit the model to the FOCUS example dataset D using defaults
fit <- mkinfit(SFO_SFO, FOCUS_2006_D)
summary(fit)

# Use stepwise fitting, using optimised parameters from parent only fit, FOMC
\dontrun{
FOMC <- mkinmod(parent = list(type = "FOMC"))
FOMC_SFO <- mkinmod(
  parent = list(type = "FOMC", to = "m1", sink = TRUE),
  m1 = list(type = "SFO"))
# Fit the model to the FOCUS example dataset D using defaults
fit.FOMC_SFO <- mkinfit(FOMC_SFO, FOCUS_2006_D)
# Use starting parameters from parent only FOMC fit
fit.FOMC = mkinfit(FOMC, FOCUS_2006_D, plot=TRUE)
fit.FOMC_SFO <- mkinfit(FOMC_SFO, FOCUS_2006_D, 
  parms.ini = fit.FOMC$bparms.ode, plot=TRUE)
}

# Use stepwise fitting, using optimised parameters from parent only fit, SFORB
SFORB <- mkinmod(parent = list(type = "SFORB"))
SFORB_SFO <- mkinmod(
  parent = list(type = "SFORB", to = "m1", sink = TRUE),
  m1 = list(type = "SFO"))
# Fit the model to the FOCUS example dataset D using defaults
fit.SFORB_SFO <- mkinfit(SFORB_SFO, FOCUS_2006_D)
# Use starting parameters from parent only SFORB fit (not really needed in this case)
fit.SFORB = mkinfit(SFORB, FOCUS_2006_D)
fit.SFORB_SFO <- mkinfit(SFORB_SFO, FOCUS_2006_D, parms.ini = fit.SFORB$bparms.ode, plot=TRUE)

# Weighted fits, including IRLS
SFO_SFO.ff <- mkinmod(parent = list(type = "SFO", to = "m1"),
                      m1 = list(type = "SFO"), use_of_ff = "max")
f.noweight <- mkinfit(SFO_SFO.ff, FOCUS_2006_D)
summary(f.noweight)
f.irls <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, reweight.method = "obs")
summary(f.irls)
f.w.mean <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, weight = "mean")
summary(f.w.mean)
f.w.mean.irls <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, weight = "mean",
                         reweight.method = "obs")
summary(f.w.mean.irls)

# Manual weighting
dw <- FOCUS_2006_D
errors <- c(parent = 2, m1 = 1)
dw$err.man <- errors[FOCUS_2006_D$name]
f.w.man <- mkinfit(SFO_SFO.ff, dw, err = "err.man")
summary(f.w.man)
f.w.man.irls <- mkinfit(SFO_SFO.ff, dw, err = "err.man",
                       reweight.method = "obs")
summary(f.w.man.irls)
}
\keyword{ models }
\keyword{ optimize }

Contact - Imprint