aboutsummaryrefslogtreecommitdiff
path: root/man/nlme.mmkin.Rd
blob: ae2b2d223fb5ac5082c7303a4579ceefcff71a42 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/nlme.mmkin.R
\name{nlme.mmkin}
\alias{nlme.mmkin}
\alias{print.nlme.mmkin}
\alias{update.nlme.mmkin}
\title{Create an nlme model for an mmkin row object}
\usage{
\method{nlme}{mmkin}(
  model,
  data = sys.frame(sys.parent()),
  fixed,
  random = fixed,
  groups,
  start,
  correlation = NULL,
  weights = NULL,
  subset,
  method = c("ML", "REML"),
  na.action = na.fail,
  naPattern,
  control = list(),
  verbose = FALSE
)

\method{print}{nlme.mmkin}(x, ...)

\method{update}{nlme.mmkin}(object, ...)
}
\arguments{
\item{model}{An \code{\link{mmkin}} row object.}

\item{data}{Should the data be printed?}

\item{fixed}{Ignored, all degradation parameters fitted in the
mmkin model are used as fixed parameters}

\item{random}{If not specified, all fixed effects are complemented
with uncorrelated random effects}

\item{groups}{See the documentation of nlme}

\item{start}{If not specified, mean values of the fitted degradation
parameters taken from the mmkin object are used}

\item{correlation}{See the documentation of nlme}

\item{weights}{passed to nlme}

\item{subset}{passed to nlme}

\item{method}{passed to nlme}

\item{na.action}{passed to nlme}

\item{naPattern}{passed to nlme}

\item{control}{passed to nlme}

\item{verbose}{passed to nlme}

\item{x}{An nlme.mmkin object to print}

\item{...}{Update specifications passed to update.nlme}

\item{object}{An nlme.mmkin object to update}
}
\value{
Upon success, a fitted nlme.mmkin object, which is an nlme object
with additional elements
}
\description{
This functions sets up a nonlinear mixed effects model for an mmkin row
object. An mmkin row object is essentially a list of mkinfit objects that
have been obtained by fitting the same model to a list of datasets.
}
\examples{
ds <- lapply(experimental_data_for_UBA_2019[6:10],
 function(x) subset(x$data[c("name", "time", "value")], name == "parent"))
f <- mmkin("SFO", ds, quiet = TRUE, cores = 1)
library(nlme)
endpoints(f[[1]])
f_nlme <- nlme(f)
print(f_nlme)
endpoints(f_nlme)
\dontrun{
  f_nlme_2 <- nlme(f, start = c(parent_0 = 100, log_k_parent_sink = 0.1))
  update(f_nlme_2, random = parent_0 ~ 1)
  # Test on some real data
  ds_2 <- lapply(experimental_data_for_UBA_2019[6:10],
   function(x) x$data[c("name", "time", "value")])
  m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
    A1 = mkinsub("SFO"), use_of_ff = "min", quiet = TRUE)
  m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"),
    A1 = mkinsub("SFO"), use_of_ff = "max", quiet = TRUE)
  m_fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
    A1 = mkinsub("SFO"), quiet = TRUE)
  m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
    A1 = mkinsub("SFO"), quiet = TRUE)

  f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo,
   "SFO-SFO-ff" = m_sfo_sfo_ff,
   "FOMC-SFO" = m_fomc_sfo,
   "DFOP-SFO" = m_dfop_sfo),
    ds_2, quiet = TRUE)
  plot(f_2["SFO-SFO", 3:4]) # Separate fits for datasets 3 and 4

  f_nlme_sfo_sfo <- nlme(f_2["SFO-SFO", ])
  # plot(f_nlme_sfo_sfo) # not feasible with pkgdown figures
  plot(f_nlme_sfo_sfo, 3:4) # Global mixed model: Fits for datasets 3 and 4

  # With formation fractions
  f_nlme_sfo_sfo_ff <- nlme(f_2["SFO-SFO-ff", ])
  plot(f_nlme_sfo_sfo_ff, 3:4) # chi2 different due to different df attribution

  # For more parameters, we need to increase pnlsMaxIter and the tolerance
  # to get convergence
  f_nlme_fomc_sfo <- nlme(f_2["FOMC-SFO", ],
    control = list(pnlsMaxIter = 100, tolerance = 1e-4), verbose = TRUE)
  f_nlme_dfop_sfo <- nlme(f_2["DFOP-SFO", ],
    control = list(pnlsMaxIter = 120, tolerance = 5e-4), verbose = TRUE)
  plot(f_2["FOMC-SFO", 3:4])
  plot(f_nlme_fomc_sfo, 3:4)

  plot(f_2["DFOP-SFO", 3:4])
  plot(f_nlme_dfop_sfo, 3:4)

  anova(f_nlme_dfop_sfo, f_nlme_fomc_sfo, f_nlme_sfo_sfo)
  anova(f_nlme_dfop_sfo, f_nlme_sfo_sfo) # if we ignore FOMC

  endpoints(f_nlme_sfo_sfo)
  endpoints(f_nlme_dfop_sfo)
}
}
\seealso{
\code{\link{nlme_function}}
}

Contact - Imprint