aboutsummaryrefslogtreecommitdiff
path: root/man/nlmixr.mmkin.Rd
blob: 86bbdc9f01559953f85d640c3e09db087ebdf154 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/nlmixr.R
\name{nlmixr.mmkin}
\alias{nlmixr.mmkin}
\alias{print.nlmixr.mmkin}
\alias{nlmixr_model}
\alias{nlmixr_data}
\title{Fit nonlinear mixed models using nlmixr}
\usage{
\method{nlmixr}{mmkin}(
  object,
  data = NULL,
  est = NULL,
  control = list(),
  table = tableControl(),
  error_model = object[[1]]$err_mod,
  test_log_parms = TRUE,
  conf.level = 0.6,
  ...,
  save = NULL,
  envir = parent.frame()
)

\method{print}{nlmixr.mmkin}(x, digits = max(3, getOption("digits") - 3), ...)

nlmixr_model(
  object,
  est = c("saem", "focei"),
  degparms_start = "auto",
  test_log_parms = FALSE,
  conf.level = 0.6,
  error_model = object[[1]]$err_mod
)

nlmixr_data(object, ...)
}
\arguments{
\item{object}{An \link{mmkin} row object containing several fits of the same
\link{mkinmod} model to different datasets}

\item{est}{Estimation method passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}}

\item{control}{Passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}.}

\item{test_log_parms}{If TRUE, an attempt is made to use more robust starting
values for population parameters fitted as log parameters in mkin (like
rate constants) by only considering rate constants that pass the t-test
when calculating mean degradation parameters using \link{mean_degparms}.}

\item{conf.level}{Possibility to adjust the required confidence level
for parameter that are tested if requested by 'test_log_parms'.}

\item{\dots}{Passed to \link{nlmixr_model}}

\item{x}{An nlmixr.mmkin object to print}

\item{digits}{Number of digits to use for printing}

\item{degparms_start}{Parameter values given as a named numeric vector will
be used to override the starting values obtained from the 'mmkin' object.}

\item{solution_type}{Possibility to specify the solution type in case the
automatic choice is not desired}
}
\value{
An S3 object of class 'nlmixr.mmkin', containing the fitted
\link[nlmixr:nlmixr]{nlmixr::nlmixr} object as a list component named 'nm'. The
object also inherits from 'mixed.mmkin'.

An function defining a model suitable for fitting with \link[nlmixr:nlmixr]{nlmixr::nlmixr}.

An dataframe suitable for use with \link[nlmixr:nlmixr]{nlmixr::nlmixr}
}
\description{
This function uses \code{\link[nlmixr:nlmixr]{nlmixr::nlmixr()}} as a backend for fitting nonlinear mixed
effects models created from \link{mmkin} row objects using the Stochastic Approximation
Expectation Maximisation algorithm (SAEM).
}
\details{
An mmkin row object is essentially a list of mkinfit objects that have been
obtained by fitting the same model to a list of datasets using \link{mkinfit}.
}
\examples{
ds <- lapply(experimental_data_for_UBA_2019[6:10],
 function(x) subset(x$data[c("name", "time", "value")]))
names(ds) <- paste("Dataset", 6:10)
f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP", "HS"), ds, quiet = TRUE, cores = 1)
f_mmkin_parent_tc <- mmkin(c("SFO", "FOMC", "DFOP"), ds, error_model = "tc",
  cores = 1, quiet = TRUE)

f_nlmixr_sfo_saem <- nlmixr(f_mmkin_parent["SFO", ], est = "saem")
f_nlmixr_sfo_focei <- nlmixr(f_mmkin_parent["SFO", ], est = "focei")

f_nlmixr_fomc_saem <- nlmixr(f_mmkin_parent["FOMC", ], est = "saem")
f_nlmixr_fomc_focei <- nlmixr(f_mmkin_parent["FOMC", ], est = "focei")

f_nlmixr_dfop_saem <- nlmixr(f_mmkin_parent["DFOP", ], est = "saem")
f_nlmixr_dfop_focei <- nlmixr(f_mmkin_parent["DFOP", ], est = "focei")

f_nlmixr_hs_saem <- nlmixr(f_mmkin_parent["HS", ], est = "saem")
f_nlmixr_hs_focei <- nlmixr(f_mmkin_parent["HS", ], est = "focei")

f_nlmixr_fomc_saem_tc <- nlmixr(f_mmkin_parent_tc["FOMC", ], est = "saem")
f_nlmixr_fomc_focei_tc <- nlmixr(f_mmkin_parent_tc["FOMC", ], est = "focei")

AIC(
  f_nlmixr_sfo_saem$nm, f_nlmixr_sfo_focei$nm,
  f_nlmixr_fomc_saem$nm, f_nlmixr_fomc_focei$nm,
  f_nlmixr_dfop_saem$nm, f_nlmixr_dfop_focei$nm,
  f_nlmixr_hs_saem$nm, f_nlmixr_hs_focei$nm,
  f_nlmixr_fomc_saem_tc$nm, f_nlmixr_fomc_focei_tc$nm)

AIC(nlme(f_mmkin_parent["FOMC", ]))
AIC(nlme(f_mmkin_parent["HS", ]))

# nlme is comparable to nlmixr with focei, saem finds a better
# solution, the two-component error model does not improve it
plot(f_nlmixr_fomc_saem)

\dontrun{
sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
  A1 = mkinsub("SFO"))
fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
  A1 = mkinsub("SFO"))
dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
  A1 = mkinsub("SFO"))

f_mmkin_const <- mmkin(list(
    "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
  ds, quiet = TRUE, error_model = "const")
f_mmkin_obs <- mmkin(list(
    "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
  ds, quiet = TRUE, error_model = "obs")
f_mmkin_tc <- mmkin(list(
    "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
  ds, quiet = TRUE, error_model = "tc")

# A single constant variance is currently only possible with est = 'focei' in nlmixr
f_nlmixr_sfo_sfo_focei_const <- nlmixr(f_mmkin_const["SFO-SFO", ], est = "focei")
f_nlmixr_fomc_sfo_focei_const <- nlmixr(f_mmkin_const["FOMC-SFO", ], est = "focei")
f_nlmixr_dfop_sfo_focei_const <- nlmixr(f_mmkin_const["DFOP-SFO", ], est = "focei")

# Variance by variable is supported by 'saem' and 'focei'
f_nlmixr_fomc_sfo_saem_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "saem")
f_nlmixr_fomc_sfo_focei_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "focei")
f_nlmixr_dfop_sfo_saem_obs <- nlmixr(f_mmkin_obs["DFOP-SFO", ], est = "saem")
f_nlmixr_dfop_sfo_focei_obs <- nlmixr(f_mmkin_obs["DFOP-SFO", ], est = "focei")

# Identical two-component error for all variables is only possible with
# est = 'focei' in nlmixr
f_nlmixr_fomc_sfo_focei_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei")
f_nlmixr_dfop_sfo_focei_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei")

# Two-component error by variable is possible with both estimation methods
# Variance by variable is supported by 'saem' and 'focei'
f_nlmixr_fomc_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "saem",
  error_model = "obs_tc")
f_nlmixr_fomc_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei",
  error_model = "obs_tc")
f_nlmixr_dfop_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "saem",
  error_model = "obs_tc")
f_nlmixr_dfop_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei",
  error_model = "obs_tc")

AIC(
  f_nlmixr_sfo_sfo_focei_const$nm,
  f_nlmixr_fomc_sfo_focei_const$nm,
  f_nlmixr_dfop_sfo_focei_const$nm,
  f_nlmixr_fomc_sfo_saem_obs$nm,
  f_nlmixr_fomc_sfo_focei_obs$nm,
  f_nlmixr_dfop_sfo_saem_obs$nm,
  f_nlmixr_dfop_sfo_focei_obs$nm,
  f_nlmixr_fomc_sfo_focei_tc$nm,
  f_nlmixr_dfop_sfo_focei_tc$nm,
  f_nlmixr_fomc_sfo_saem_obs_tc$nm,
  f_nlmixr_fomc_sfo_focei_obs_tc$nm,
  f_nlmixr_dfop_sfo_saem_obs_tc$nm,
  f_nlmixr_dfop_sfo_focei_obs_tc$nm
)
# Currently, FOMC-SFO with two-component error by variable fitted by focei gives the
# lowest AIC
plot(f_nlmixr_fomc_sfo_focei_obs_tc)
summary(f_nlmixr_fomc_sfo_focei_obs_tc)
}
}
\seealso{
\link{summary.nlmixr.mmkin} \link{plot.mixed.mmkin}
}

Contact - Imprint