1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
test_that("Reweighting method 'tc' produces reasonable variance estimates", {
# Check if we can approximately obtain the parameters and the error model
# components that were used in the data generation
# Parent only
DFOP <- mkinmod(parent = mkinsub("DFOP"))
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
parms_DFOP <- c(k1 = 0.2, k2 = 0.02, g = 0.5)
parms_DFOP_optim <- c(parent_0 = 100, parms_DFOP)
d_DFOP <- mkinpredict(DFOP,
parms_DFOP, c(parent = 100),
sampling_times)
d_2_10 <- add_err(d_DFOP,
sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07),
n = 10, reps = 2, digits = 5, LOD = -Inf, seed = 123456)
d_100_1 <- add_err(d_DFOP,
sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07),
n = 1, reps = 100, digits = 5, LOD = -Inf, seed = 123456)
# Per default (on my box where I set NOT_CRAN) use all cores minus one
if (identical(Sys.getenv("NOT_CRAN"), "true")) {
n_cores <- parallel::detectCores() - 1
} else {
n_cores <- 1
}
# We are only allowed one core on travis, but they also set NOT_CRAN=true
if (Sys.getenv("TRAVIS") != "") n_cores = 1
# On Windows we would need to make a cluster first
if (Sys.info()["sysname"] == "Windows") n_cores = 1
# Unweighted fits
f_2_10 <- mmkin("DFOP", d_2_10, error_model = "const", quiet = TRUE,
cores = n_cores)
parms_2_10 <- apply(sapply(f_2_10, function(x) x$bparms.optim), 1, mean)
parm_errors_2_10 <- (parms_2_10 - parms_DFOP_optim) / parms_DFOP_optim
expect_true(all(abs(parm_errors_2_10) < 0.12))
f_2_10_tc <- mmkin("DFOP", d_2_10, error_model = "tc", quiet = TRUE,
cores = n_cores)
parms_2_10_tc <- apply(sapply(f_2_10_tc, function(x) x$bparms.optim), 1, mean)
parm_errors_2_10_tc <- (parms_2_10_tc - parms_DFOP_optim) / parms_DFOP_optim
expect_true(all(abs(parm_errors_2_10_tc) < 0.05))
tcf_2_10_tc <- apply(sapply(f_2_10_tc, function(x) x$errparms), 1, mean, na.rm = TRUE)
tcf_2_10_error_model_errors <- (tcf_2_10_tc - c(0.5, 0.07)) / c(0.5, 0.07)
expect_true(all(abs(tcf_2_10_error_model_errors) < 0.2))
# When we have 100 replicates in the synthetic data, we can roundtrip
# the parameters with < 2% precision
f_tc_100_1 <- mkinfit(DFOP, d_100_1[[1]], error_model = "tc", quiet = TRUE)
parm_errors_100_1 <- (f_tc_100_1$bparms.optim - parms_DFOP_optim) / parms_DFOP_optim
expect_true(all(abs(parm_errors_100_1) < 0.02))
tcf_100_1_error_model_errors <- (f_tc_100_1$errparms - c(0.5, 0.07)) /
c(0.5, 0.07)
# We also get a precision of < 2% for the error model components
expect_true(all(abs(tcf_100_1_error_model_errors) < 0.02))
# Parent and two metabolites
m_synth_DFOP_lin <- mkinmod(parent = list(type = "DFOP", to = "M1"),
M1 = list(type = "SFO", to = "M2"),
M2 = list(type = "SFO"), use_of_ff = "max",
quiet = TRUE)
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
parms_DFOP_lin <- c(k1 = 0.2, k2 = 0.02, g = 0.5,
f_parent_to_M1 = 0.5, k_M1 = 0.3,
f_M1_to_M2 = 0.7, k_M2 = 0.02)
d_synth_DFOP_lin <- mkinpredict(m_synth_DFOP_lin,
parms_DFOP_lin,
c(parent = 100, M1 = 0, M2 = 0),
sampling_times)
parms_DFOP_lin_optim = c(parent_0 = 100, parms_DFOP_lin)
d_met_2_15 <- add_err(d_synth_DFOP_lin,
sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07),
n = 15, reps = 100, digits = 5, LOD = 0.01, seed = 123456)
# For a single fit, we get a relative error of less than 5% in the error
# model components
f_met_2_tc_e4 <- mkinfit(m_synth_DFOP_lin, d_met_2_15[[1]], quiet = TRUE,
error_model = "tc", error_model_algorithm = "direct")
parm_errors_met_2_tc_e4 <- (f_met_2_tc_e4$errparms - c(0.5, 0.07)) / c(0.5, 0.07)
expect_true(all(abs(parm_errors_met_2_tc_e4) < 0.05))
# Doing more takes a lot of computing power
skip_on_travis()
skip_on_cran()
f_met_2_15_tc_e4 <- mmkin(list(m_synth_DFOP_lin), d_met_2_15, quiet = TRUE,
error_model = "tc", cores = n_cores)
parms_met_2_15_tc_e4 <- apply(sapply(f_met_2_15_tc_e4, function(x) x$bparms.optim), 1, mean)
parm_errors_met_2_15_tc_e4 <- (parms_met_2_15_tc_e4[names(parms_DFOP_lin_optim)] -
parms_DFOP_lin_optim) / parms_DFOP_lin_optim
expect_true(all(abs(parm_errors_met_2_15_tc_e4) < 0.015))
tcf_met_2_15_tc <- apply(sapply(f_met_2_15_tc_e4, function(x) x$errparms), 1, mean, na.rm = TRUE)
tcf_met_2_15_tc_error_model_errors <- (tcf_met_2_15_tc - c(0.5, 0.07)) /
c(0.5, 0.07)
# Here we get a precision < 10% for retrieving the original error model components
# from 15 datasets
expect_true(all(abs(tcf_met_2_15_tc_error_model_errors) < 0.10))
})
test_that("The different error model fitting methods work for parent fits", {
skip_on_cran()
f_9_OLS <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data,
quiet = TRUE)
expect_equivalent(round(AIC(f_9_OLS), 2), 137.43)
f_9_direct <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data,
error_model = "tc", error_model_algorithm = "direct", quiet = TRUE)
expect_equivalent(round(AIC(f_9_direct), 2), 134.94)
f_9_twostep <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data,
error_model = "tc", error_model_algorithm = "twostep", quiet = TRUE)
expect_equivalent(round(AIC(f_9_twostep), 2), 134.94)
f_9_threestep <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data,
error_model = "tc", error_model_algorithm = "threestep", quiet = TRUE)
expect_equivalent(round(AIC(f_9_threestep), 2), 139.43)
f_9_fourstep <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data,
error_model = "tc", error_model_algorithm = "fourstep", quiet = TRUE)
expect_equivalent(round(AIC(f_9_fourstep), 2), 139.43)
f_9_IRLS <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data,
error_model = "tc", error_model_algorithm = "IRLS", quiet = TRUE)
expect_equivalent(round(AIC(f_9_IRLS), 2), 139.43)
f_9_d_3 <- mkinfit("SFO", experimental_data_for_UBA_2019[[9]]$data,
error_model = "tc", error_model_algorithm = "d_3", quiet = TRUE)
expect_equivalent(round(AIC(f_9_d_3), 2), 134.94)
})
|