blob: 1ea5f3b7e2891450e780268c5b29d106b1546668 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
nlme version used for fitting: Dummy 0.0 for testing
mkin version used for pre-fitting: Dummy 0.0 for testing
R version used for fitting: Dummy R version for testing
Date of fit: Dummy date for testing
Date of summary: Dummy date for testing
Equations:
d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
* parent
Data:
270 observations of 1 variable(s) grouped in 15 datasets
Model predictions using solution type analytical
Fitted in test time 0 s using 5 iterations
Variance model: Two-component variance function
Mean of starting values for individual parameters:
parent_0 log_k1 log_k2 g_qlogis
100.2 -2.6 -4.2 0.1
Fixed degradation parameter values:
None
Results:
AIC BIC logLik
1410 1446 -695
Optimised, transformed parameters with symmetric confidence intervals:
lower est. upper
parent_0 98.7 100.1 101.5
log_k1 -2.9 -2.7 -2.5
log_k2 -4.2 -4.1 -4.0
g_qlogis -0.7 -0.4 -0.2
Correlation:
pr_0 lg_1 lg_2
log_k1 0.3
log_k2 0.1 0.2
g_qlogis -0.1 -0.5 -0.4
Random effects:
Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
Level: ds
Structure: Diagonal
parent_0 log_k1 log_k2 g_qlogis Residual
StdDev: 2 0.3 0.2 0.2 1
Variance function:
Structure: Constant plus proportion of variance covariate
Formula: ~fitted(.)
Parameter estimates:
const prop
0.9227564 -0.0480500
Backtransformed parameters with asymmetric confidence intervals:
lower est. upper
parent_0 98.69 1e+02 1e+02
k1 0.06 7e-02 9e-02
k2 0.01 2e-02 2e-02
g 0.34 4e-01 5e-01
Estimated disappearance times:
DT50 DT90 DT50back DT50_k1 DT50_k2
parent 23 111 33 10 43
|