1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
context("Dimethenamid data from 2018")
# Data
dmta_ds <- lapply(1:7, function(i) {
ds_i <- dimethenamid_2018$ds[[i]]$data
ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
ds_i
})
names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
dmta_ds[["Elliot 1"]] <- dmta_ds[["Elliot 2"]] <- NULL
# mkin
dmta_dfop <- mmkin("DFOP", dmta_ds, quiet = TRUE)
dmta_dfop_tc <- mmkin("DFOP", dmta_ds, error_model = "tc", quiet = TRUE)
test_that("Different backends get consistent results for DFOP tc, dimethenamid data", {
# nlme
expect_warning(
nlme_dfop_tc <- nlme(dmta_dfop_tc),
"Iteration 3, .* false convergence")
ints_nlme <- intervals(nlme_dfop_tc)
# saemix
saem_saemix_dfop_tc <- saem(dmta_dfop_tc)
ints_saemix <- intervals(saem_saemix_dfop_tc)
# saemix mkin transformations
saem_saemix_dfop_tc_mkin <- saem(dmta_dfop_tc, transformations = "mkin")
ints_saemix_mkin <- intervals(saem_saemix_dfop_tc_mkin)
# nlmixr saem
saem_nlmixr_dfop_tc <- nlmixr(dmta_dfop_tc, est = "saem",
control = nlmixr::saemControl(nBurn = 300, nEm = 100, nmc = 9, print = 0))
ints_nlmixr_saem <- intervals(saem_nlmixr_dfop_tc)
# nlmixr focei
# We get three warnings about nudged etas, the initial optimization and
# gradient problems with initial estimate and covariance
# We need to capture output, otherwise it pops up in testthat output
expect_warning(tmp <- capture_output(focei_nlmixr_dfop_tc <- nlmixr(
dmta_dfop_tc, est = "focei",
control = nlmixr::foceiControl(print = 0), all = TRUE)))
ints_nlmixr_focei <- intervals(focei_nlmixr_dfop_tc)
# Fixed effects
## saemix vs. nlme
expect_true(all(ints_saemix$fixed[, "est."] >
backtransform_odeparms(ints_nlme$fixed[, "lower"], dmta_dfop$mkinmod)))
expect_true(all(ints_saemix$fixed[, "est."] <
backtransform_odeparms(ints_nlme$fixed[, "upper"], dmta_dfop$mkinmod)))
## saemix mkin vs. nlme
expect_true(all(ints_saemix_mkin$fixed[, "est."] >
backtransform_odeparms(ints_nlme$fixed[, "lower"], dmta_dfop$mkinmod)))
expect_true(all(ints_saemix_mkin$fixed[, "est."] <
backtransform_odeparms(ints_nlme$fixed[, "upper"], dmta_dfop$mkinmod)))
## nlmixr saem vs. nlme
expect_true(all(ints_nlmixr_saem$fixed[, "est."] >
backtransform_odeparms(ints_nlme$fixed[, "lower"], dmta_dfop$mkinmod)))
expect_true(all(ints_nlmixr_saem$fixed[, "est."] <
backtransform_odeparms(ints_nlme$fixed[, "upper"], dmta_dfop$mkinmod)))
## nlmixr focei vs. nlme
expect_true(all(ints_nlmixr_focei$fixed[, "est."] >
backtransform_odeparms(ints_nlme$fixed[, "lower"], dmta_dfop$mkinmod)))
expect_true(all(ints_nlmixr_focei$fixed[, "est."] <
backtransform_odeparms(ints_nlme$fixed[, "upper"], dmta_dfop$mkinmod)))
# Random effects
## for saemix with saemix transformations, the comparison would be complicated...
## saemix mkin vs. nlme
expect_true(all(ints_saemix$random[, "est."] >
backtransform_odeparms(ints_nlme$reStruct$ds[, "lower"], dmta_dfop$mkinmod)))
expect_true(all(ints_saemix$fixed[, "est."] <
backtransform_odeparms(ints_nlme$fixed[, "upper"], dmta_dfop$mkinmod)))
## nlmixr saem vs. nlme
expect_true(all(ints_nlmixr_saem$random[, "est."] >
backtransform_odeparms(ints_nlme$reStruct$ds[, "lower"], dmta_dfop$mkinmod)))
expect_true(all(ints_nlmixr_saem$random[, "est."] <
backtransform_odeparms(ints_nlme$reStruct$ds[, "upper"], dmta_dfop$mkinmod)))
## nlmixr focei vs. nlme
expect_true(all(ints_nlmixr_focei$random[, "est."] >
backtransform_odeparms(ints_nlme$reStruct$ds[, "lower"], dmta_dfop$mkinmod)))
expect_true(all(ints_nlmixr_focei$random[, "est."] <
backtransform_odeparms(ints_nlme$reStruct$ds[, "upper"], dmta_dfop$mkinmod)))
# Variance function
skip_on_travis() # For some reason this fails on Travis
# saemix vs. nlme
expect_true(all(ints_saemix[[3]][, "est."] >
ints_nlme$varStruct[, "lower"]))
expect_true(all(ints_saemix[[3]][, "est."] <
ints_nlme$varStruct[, "upper"]))
# saemix with mkin transformations vs. nlme
expect_true(all(ints_saemix_mkin[[3]][, "est."] >
ints_nlme$varStruct[, "lower"]))
expect_true(all(ints_saemix_mkin[[3]][, "est."] <
ints_nlme$varStruct[, "upper"]))
# nlmixr saem vs. nlme
expect_true(all(ints_nlmixr_saem[[3]][, "est."] >
ints_nlme$varStruct[, "lower"]))
expect_true(all(ints_nlmixr_saem[[3]][, "est."] <
ints_nlme$varStruct[, "upper"]))
# nlmixr focei vs. nlme
# We only test for the proportional part (rsd_high), as the
# constant part (sigma_low) obtained with nlmixr/FOCEI is below the lower
# bound of the confidence interval obtained with nlme
expect_true(ints_nlmixr_focei[[3]]["rsd_high", "est."] >
ints_nlme$varStruct["prop", "lower"])
expect_true(ints_nlmixr_focei[[3]]["rsd_high", "est."] <
ints_nlme$varStruct["prop", "upper"])
})
# Compared to the 2020 paper https://doi.org/10.3390/environments8080071
# the data are different, as there was an error in the handling of the
# Borstel data in the mkin package at the time.
# The model called DFOP-SFO3+ in the paper appears to be overparameterised with
# the corrected data, we get lots of problems trying to use it with mmkin, nlme
# and saemix
sfo_sfo3p <- mkinmod(
DMTA = mkinsub("SFO", c("M23", "M27", "M31")),
M23 = mkinsub("SFO"),
M27 = mkinsub("SFO"),
M31 = mkinsub("SFO", "M27", sink = FALSE),
quiet = TRUE
)
dmta_sfo_sfo3p_tc <- mmkin(list("SFO-SFO3+" = sfo_sfo3p),
dmta_ds, error_model = "tc", quiet = TRUE)
test_that("Different backends get consistent results for SFO-SFO3+, dimethenamid data", {
expect_warning(nlme_sfo_sfo3p_tc <- nlme(dmta_sfo_sfo3p_tc,
start = mean_degparms(dmta_sfo_sfo3p_tc, test_log_parms = TRUE)),
"Iteration 5, LME step.*not converge")
ints_nlme_mets <- intervals(nlme_sfo_sfo3p_tc, which = "fixed")
# The saem fit with nlmixr takes only about 15 seconds
tmp <- capture.output(
saem_nlmixr_sfo_sfo3p_tc <- nlmixr(dmta_sfo_sfo3p_tc, est = "saem",
control = nlmixr::saemControl(print = 0)))
ints_nlmixr_saem_mets <- intervals(saem_nlmixr_sfo_sfo3p_tc)
# We need to exclude the ilr transformed formation fractions in these
# tests, as they do not have a one to one relation in the transformations
expect_true(all(ints_nlmixr_saem_mets$fixed[, "est."][-c(6, 7, 8)] >
backtransform_odeparms(ints_nlme_mets$fixed[, "lower"][-c(6, 7, 8)], sfo_sfo3p)))
expect_true(all(ints_nlmixr_saem_mets$fixed[, "est."][-c(6, 7, 8)] <
backtransform_odeparms(ints_nlme_mets$fixed[, "upper"], sfo_sfo3p)[-c(6, 7, 8)]))
skip("Fitting this ODE model with saemix takes about 15 minutes on my system")
# As DFOP is overparameterised and leads to instabilities and errors, we
# need to use SFO.
# saem_saemix_sfo_sfo3p_tc <- saem(dmta_sfo_sfo3p_tc)
# The fit above, using SFO for the parent leads to low values of DMTA_0
# (confidence interval from 84.4 to 92.8) which is not consistent with what
# we know about this value. Therefore, we fix it to the initial estimate
# obtained from the separate fits (95.6)
saem_saemix_sfo_sfo3p_tc_DMTA_0_fixed <- saem(dmta_sfo_sfo3p_tc,
fixed.estim = c(0, rep(1, 7)))
ints_saemix_mets <- intervals(saem_saemix_sfo_sfo3p_tc_DMTA_0_fixed)
# Again, we need to exclude the ilr transformed formation fractions in these
# tests, as they do not have a one to one relation in the transformations
expect_true(all(ints_saemix_mets$fixed[, "est."][-c(6, 7, 8)] >
backtransform_odeparms(ints_nlme_mets$fixed[, "lower"][-c(6, 7, 8)], sfo_sfo3p)))
expect_true(all(ints_saemix_mets$fixed[, "est."][-c(6, 7, 8)] <
backtransform_odeparms(ints_nlme_mets$fixed[, "upper"], sfo_sfo3p)[-c(6, 7, 8)]))
})
|