1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
# Copyright (C) 2018 Johannes Ranke
# Contact: jranke@uni-bremen.de
# This file is part of the R package mkin
# mkin is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <http://www.gnu.org/licenses/>
context("Iteratively reweighted least squares (IRLS) fitting")
m_synth_SFO_lin <- mkinmod(parent = mkinsub("SFO", "M1"),
M1 = mkinsub("SFO", "M2"),
M2 = mkinsub("SFO"),
use_of_ff = "max", quiet = TRUE)
m_synth_DFOP_par <- mkinmod(parent = mkinsub("DFOP", c("M1", "M2")),
M1 = mkinsub("SFO"),
M2 = mkinsub("SFO"),
use_of_ff = "max", quiet = TRUE)
SFO_lin_a <- synthetic_data_for_UBA_2014[[1]]$data
DFOP_par_c <- synthetic_data_for_UBA_2014[[12]]$data
test_that("Reweighting method 'obs' works", {
skip_on_cran()
fit_irls_1 <- mkinfit(m_synth_SFO_lin, SFO_lin_a, reweight.method = "obs", quiet = TRUE)
parms_1 <- round(fit_irls_1$bparms.optim, c(1, 4, 4, 4, 4, 4))
expect_equivalent(parms_1, c(102.1, 0.7389, 0.2982, 0.0203, 0.7677, 0.7246))
})
test_that("Reweighting method 'tc' works", {
skip_on_cran()
# Check if we can approximately obtain the parameters and the error model
# components that were used in the data generation
# Parent only
DFOP <- mkinmod(parent = mkinsub("DFOP"))
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
parms_DFOP <- c(k1 = 0.2, k2 = 0.02, g = 0.5)
parms_DFOP_optim <- c(parent_0 = 100, parms_DFOP)
d_DFOP <- mkinpredict(DFOP,
parms_DFOP, c(parent = 100),
sampling_times)
d_2_10 <- add_err(d_DFOP,
sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07),
n = 10, reps = 2, digits = 5, LOD = -Inf)
d_100_1 <- add_err(d_DFOP,
sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07),
n = 1, reps = 100, digits = 5, LOD = -Inf)
f_2_10 <- mmkin("DFOP", d_2_10, quiet = TRUE,
cores = if (Sys.getenv("TRAVIS") != "") 1 else 15)
parms_2_10 <- apply(sapply(f_2_10, function(x) x$bparms.optim), 1, mean)
parm_errors_2_10 <- (parms_2_10 - parms_DFOP_optim) / parms_DFOP_optim
expect_true(all(abs(parm_errors_2_10) < 0.2))
f_2_10_tc <- mmkin("DFOP", d_2_10, reweight.method = "tc", quiet = TRUE,
cores = if (Sys.getenv("TRAVIS") != "") 1 else 15)
parms_2_10_tc <- apply(sapply(f_2_10_tc, function(x) x$bparms.optim), 1, mean)
parm_errors_2_10_tc <- (parms_2_10_tc - parms_DFOP_optim) / parms_DFOP_optim
expect_true(all(abs(parm_errors_2_10_tc) < 0.1))
tcf_2_10_tc <- apply(sapply(f_2_10_tc, function(x) x$tc_fitted), 1, mean, na.rm = TRUE)
tcf_2_10_error_model_errors <- (tcf_2_10_tc - c(0.5, 0.07)) / c(0.5, 0.07)
expect_true(all(abs(tcf_2_10_error_model_errors) < 0.2))
f_tc_100_1 <- suppressWarnings(mkinfit(DFOP, d_100_1[[1]], reweight.method = "tc", quiet = TRUE))
parm_errors_100_1 <- (f_tc_100_1$bparms.optim - parms_DFOP_optim) / parms_DFOP_optim
expect_true(all(abs(parm_errors_100_1) < 0.05))
tcf_100_1_error_model_errors <- (f_tc_100_1$tc_fitted - c(0.5, 0.07)) /
c(0.5, 0.07)
# Even with 100 (or even 1000, not shown) replicates at each observation time
# we only get a precision of 15% to 30% for the error model components
expect_true(all(abs(tcf_100_1_error_model_errors) < 0.3))
# Parent and two metabolites
m_synth_DFOP_lin <- mkinmod(parent = list(type = "DFOP", to = "M1"),
M1 = list(type = "SFO", to = "M2"),
M2 = list(type = "SFO"), use_of_ff = "max",
quiet = TRUE)
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
parms_DFOP_lin <- c(k1 = 0.2, k2 = 0.02, g = 0.5,
f_parent_to_M1 = 0.5, k_M1 = 0.3,
f_M1_to_M2 = 0.7, k_M2 = 0.02)
d_synth_DFOP_lin <- mkinpredict(m_synth_DFOP_lin,
parms_DFOP_lin,
c(parent = 100, M1 = 0, M2 = 0),
sampling_times)
parms_DFOP_lin_optim = c(parent_0 = 100, parms_DFOP_lin)
d_met_2_15 <- add_err(d_synth_DFOP_lin,
sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07),
n = 15, reps = 1000, digits = 5, LOD = -Inf)
# For a single fit, we get a relative error of less than 30% in the error
# model components
f_met_2_tc_e4 <- mkinfit(m_synth_DFOP_lin, d_met_2_15[[1]], quiet = TRUE,
reweight.method = "tc", reweight.tol = 1e-4)
parm_errors_met_2_tc_e4 <- (f_met_2_tc_e4$tc_fitted - c(0.5, 0.07)) / c(0.5, 0.07)
expect_true(all(abs(parm_errors_met_2_tc_e4) < 0.3))
# Doing more takes a lot of computing power
skip_on_travis()
f_met_2_15_tc_e4 <- mmkin(list(m_synth_DFOP_lin), d_met_2_15, quiet = TRUE,
reweight.method = "tc", reweight.tol = 1e-4,
cores = 14)
parms_met_2_15_tc_e4 <- apply(sapply(f_met_2_15_tc_e4, function(x) x$bparms.optim), 1, mean)
parm_errors_met_2_15_tc_e4 <- (parms_met_2_15_tc_e4[names(parms_DFOP_lin_optim)] -
parms_DFOP_lin_optim) / parms_DFOP_lin_optim
expect_true(all(abs(parm_errors_met_2_15_tc_e4) < 0.01))
tcf_met_2_15_tc <- apply(sapply(f_met_2_15_tc_e4, function(x) x$tc_fitted), 1, mean, na.rm = TRUE)
tcf_met_2_15_tc_error_model_errors <- (tcf_met_2_15_tc - c(0.5, 0.07)) /
c(0.5, 0.07)
# Here we only get a precision < 30% for retrieving the original error model components
# from 15 datasets
expect_true(all(abs(tcf_met_2_15_tc_error_model_errors) < 0.3))
})
|