1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
context("Nonlinear mixed effects models")
test_that("Parent only models can be fitted using nonlinear mixed effects models", {
expect_error(saem(fits), "Only row objects")
# Some fits were done in the setup script
mmkin_sfo_2 <- update(mmkin_sfo_1, fixed_initials = c(parent = 100))
expect_error(update(mmkin_sfo_1, models = c("SFOOO")), "Please supply models.*")
sfo_saem_2 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "mkin")
sfo_saem_3 <- expect_error(saem(mmkin_sfo_2, quiet = TRUE), "at least two parameters")
s_sfo_s1 <- summary(sfo_saem_1)
s_sfo_s2 <- summary(sfo_saem_2)
sfo_nlme_1 <- expect_warning(nlme(mmkin_sfo_1), "not converge")
s_sfo_n <- summary(sfo_nlme_1)
# Compare with input
expect_equal(round(s_sfo_s2$confint_ranef["SD.log_k_parent", "est."], 1), 0.3)
# k_parent is a bit different from input 0.03 here
expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), 0.035)
expect_equal(round(s_sfo_s2$confint_back["k_parent", "est."], 3), 0.035)
# But the result is pretty unanimous between methods
expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3),
round(s_sfo_s2$confint_back["k_parent", "est."], 3))
expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3),
round(s_sfo_n$confint_back["k_parent", "est."], 3))
mmkin_fomc_1 <- mmkin("FOMC", ds_fomc, quiet = TRUE, error_model = "tc")
fomc_saem_1 <- saem(mmkin_fomc_1, quiet = TRUE)
ci_fomc_s1 <- summary(fomc_saem_1)$confint_back
fomc_pop <- as.numeric(fomc_pop)
expect_true(all(ci_fomc_s1[, "lower"] < fomc_pop))
expect_true(all(ci_fomc_s1[, "upper"] > fomc_pop))
mmkin_fomc_2 <- update(mmkin_fomc_1, state.ini = 100, fixed_initials = "parent")
fomc_saem_2 <- saem(mmkin_fomc_2, quiet = TRUE, transformations = "mkin")
ci_fomc_s2 <- summary(fomc_saem_2)$confint_back
expect_true(all(ci_fomc_s2[, "lower"] < fomc_pop[2:3]))
expect_true(all(ci_fomc_s2[, "upper"] > fomc_pop[2:3]))
s_dfop_s1 <- summary(dfop_saemix_1)
s_dfop_s2 <- summary(dfop_saemix_2)
s_dfop_n <- summary(dfop_nlme_1)
dfop_pop <- as.numeric(dfop_pop)
expect_true(all(s_dfop_s1$confint_back[, "lower"] < dfop_pop))
expect_true(all(s_dfop_s1$confint_back[, "upper"] > dfop_pop))
expect_true(all(s_dfop_s2$confint_back[, "lower"] < dfop_pop))
expect_true(all(s_dfop_s2$confint_back[, "upper"] > dfop_pop))
dfop_mmkin_means_trans <- apply(parms(mmkin_dfop_1, transformed = TRUE), 1, mean)
dfop_mmkin_means <- backtransform_odeparms(dfop_mmkin_means_trans, mmkin_dfop_1$mkinmod)
# We get < 22% deviations by averaging the transformed parameters
rel_diff_mmkin <- (dfop_mmkin_means - dfop_pop) / dfop_pop
expect_true(all(rel_diff_mmkin < 0.22))
# We get < 50% deviations with transformations made in mkin
rel_diff_1 <- (s_dfop_s1$confint_back[, "est."] - dfop_pop) / dfop_pop
expect_true(all(rel_diff_1 < 0.5))
# We get < 12% deviations with transformations made in saemix
rel_diff_2 <- (s_dfop_s2$confint_back[, "est."] - dfop_pop) / dfop_pop
expect_true(all(rel_diff_2 < 0.12))
mmkin_hs_1 <- mmkin("HS", ds_hs, quiet = TRUE, error_model = "const")
hs_saem_1 <- saem(mmkin_hs_1, quiet = TRUE)
ci_hs_s1 <- summary(hs_saem_1)$confint_back
hs_pop <- as.numeric(hs_pop)
# expect_true(all(ci_hs_s1[, "lower"] < hs_pop)) # k1 is overestimated
expect_true(all(ci_hs_s1[, "upper"] > hs_pop))
mmkin_hs_2 <- update(mmkin_hs_1, state.ini = 100, fixed_initials = "parent")
hs_saem_2 <- saem(mmkin_hs_2, quiet = TRUE)
ci_hs_s2 <- summary(hs_saem_2)$confint_back
#expect_true(all(ci_hs_s2[, "lower"] < hs_pop[2:4])) # k1 again overestimated
expect_true(all(ci_hs_s2[, "upper"] > hs_pop[2:4]))
# HS would likely benefit from implemenation of transformations = "saemix"
})
test_that("Print methods work", {
expect_known_output(print(fits, digits = 2), "print_mmkin_parent.txt")
expect_known_output(print(mmkin_biphasic_mixed, digits = 2), "print_mmkin_biphasic_mixed.txt")
expect_known_output(print(nlme_biphasic, digits = 1), "print_nlme_biphasic.txt")
expect_known_output(print(sfo_saem_1, digits = 1), "print_sfo_saem_1.txt")
})
test_that("nlme results are reproducible", {
test_summary <- summary(nlme_biphasic)
test_summary$nlmeversion <- "Dummy 0.0 for testing"
test_summary$mkinversion <- "Dummy 0.0 for testing"
test_summary$Rversion <- "Dummy R version for testing"
test_summary$date.fit <- "Dummy date for testing"
test_summary$date.summary <- "Dummy date for testing"
test_summary$time <- c(elapsed = "test time 0")
expect_known_output(print(test_summary, digits = 1), "summary_nlme_biphasic_s.txt")
dfop_sfo_pop <- as.numeric(dfop_sfo_pop)
ci_dfop_sfo_n <- summary(nlme_biphasic)$confint_back
# expect_true(all(ci_dfop_sfo_n[, "lower"] < dfop_sfo_pop)) # k2 is overestimated
expect_true(all(ci_dfop_sfo_n[, "upper"] > dfop_sfo_pop))
})
test_that("saem results are reproducible for biphasic fits", {
test_summary <- summary(saem_biphasic_s)
test_summary$saemixversion <- "Dummy 0.0 for testing"
test_summary$mkinversion <- "Dummy 0.0 for testing"
test_summary$Rversion <- "Dummy R version for testing"
test_summary$date.fit <- "Dummy date for testing"
test_summary$date.summary <- "Dummy date for testing"
test_summary$time <- c(elapsed = "test time 0")
expect_known_output(print(test_summary, digits = 2), "summary_saem_biphasic_s.txt")
dfop_sfo_pop <- as.numeric(dfop_sfo_pop)
ci_dfop_sfo_s_s <- summary(saem_biphasic_s)$confint_back
expect_true(all(ci_dfop_sfo_s_s[, "lower"] < dfop_sfo_pop))
expect_true(all(ci_dfop_sfo_s_s[, "upper"] > dfop_sfo_pop))
# The following does not work, as k1 and k2 are not fitted well
ci_dfop_sfo_s_m <- summary(saem_biphasic_m)$confint_back
# expect_true(all(ci_dfop_sfo_s_m[, "lower"] < dfop_sfo_pop))
# expect_true(all(ci_dfop_sfo_s_m[, "upper"] > dfop_sfo_pop))
# Somehow this does not work at the moment. But it took forever (~ 10 min) anyways...
#saem_biphasic_2 <- saem(mmkin_biphasic, solution_type = "deSolve", quiet = TRUE)
})
|