1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
context("Nonlinear mixed-effects models")
library(nlme)
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
test_that("nlme_function works correctly", {
m_SFO <- mkinmod(parent = mkinsub("SFO"))
d_SFO_1 <- mkinpredict(m_SFO,
c(k_parent = 0.1),
c(parent = 98), sampling_times)
d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time")
d_SFO_2 <- mkinpredict(m_SFO,
c(k_parent = 0.05),
c(parent = 102), sampling_times)
d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time")
d_SFO_3 <- mkinpredict(m_SFO,
c(k_parent = 0.02),
c(parent = 103), sampling_times)
d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time")
d1 <- add_err(d_SFO_1, function(value) 3, n = 1, seed = 123456)
d2 <- add_err(d_SFO_2, function(value) 2, n = 1, seed = 234567)
d3 <- add_err(d_SFO_3, function(value) 4, n = 1, seed = 345678)
ds <- c(d1 = d1, d2 = d2, d3 = d3)
f <- mmkin("SFO", ds, cores = 1, quiet = TRUE)
mean_dp <- mean_degparms(f)
grouped_data <- nlme_data(f)
nlme_f <- nlme_function(f)
# The following assignment was introduced for nlme as evaluated by testthat
# to find the function
assign("nlme_f", nlme_f, pos = globalenv())
m_nlme_raw <- nlme(value ~ SSasymp(time, 0, parent_0, log_k_parent_sink),
data = grouped_data,
fixed = parent_0 + log_k_parent_sink ~ 1,
random = pdLogChol(parent_0 + log_k_parent_sink ~ 1),
start = mean_dp,
control = list("msWarnNoConv" = FALSE))
m_nlme_mkin <- nlme(value ~ nlme_f(name, time, parent_0, log_k_parent_sink),
data = grouped_data,
fixed = parent_0 + log_k_parent_sink ~ 1,
random = pdLogChol(parent_0 + log_k_parent_sink ~ 1),
start = mean_dp,
control = list("msWarnNoConv" = FALSE))
expect_equal(m_nlme_raw$coefficients, m_nlme_mkin$coefficients)
m_nlme_mmkin <- nlme(f, control = list("msWarnNoConv" = FALSE))
m_nlme_raw_2 <- nlme(value ~ SSasymp(time, 0, parent_0, log_k_parent),
data = grouped_data,
fixed = parent_0 + log_k_parent ~ 1,
random = pdLogChol(parent_0 + log_k_parent ~ 1),
start = mean_degparms(f, random = TRUE),
control = list("msWarnNoConv" = FALSE))
expect_equal(m_nlme_raw_2$coefficients, m_nlme_mmkin$coefficients)
anova_nlme <- anova(m_nlme_raw, m_nlme_mmkin)
# We get a slightly lower AIC with the improved starting values used within
# nlme.mmkin, specifying also random effects
expect_lt(anova_nlme["m_nlme_mmkin", "AIC"],
anova_nlme["m_nlme_raw", "AIC"])
m_nlme_raw_up_1 <- update(m_nlme_raw, random = log_k_parent_sink ~ 1)
# The following three calls give an error although they should
# do the same as the call above
# The error occurs in the evaluation of the modelExpression in the
# call to .C(fit_nlme, ...)
# m_nlme_mkin_up_1 <- update(m_nlme_mkin, random = log_k_parent_sink ~ 1)
# m_nlme_mkin <- nlme(value ~ nlme_f(name, time, parent_0, log_k_parent_sink),
# data = grouped_data,
# fixed = parent_0 + log_k_parent_sink ~ 1,
# random = log_k_parent_sink ~ 1,
# start = mean_dp)
# update(m_nlme_mmkin, random = pdDiag(log_k_parent_sink ~ 1),
# start = c(parent_0 = 100, log_k_parent_sink = 0.1))
m_nlme_raw_up_2 <- update(m_nlme_raw, random = parent_0 ~ 1)
m_nlme_mkin_up_2 <- update(m_nlme_mkin, random = parent_0 ~ 1)
expect_equal(m_nlme_raw_up_2$coefficients, m_nlme_mkin_up_2$coefficients)
expect_warning(tmp <- update(m_nlme_mmkin), "Iteration 1, LME step")
geomean_dt50_mmkin <- exp(mean(log((sapply(f, function(x) endpoints(x)$distimes["parent", "DT50"])))))
expect_equal(round(endpoints(m_nlme_mmkin)$distimes["parent", "DT50"]), round(geomean_dt50_mmkin))
})
test_that("nlme_function works correctly in other cases", {
skip_on_cran()
dt50_in <- c(400, 800, 1200, 1600, 2000)
k_in <- log(2) / dt50_in
SFO <- mkinmod(parent = mkinsub("SFO"))
pred_sfo <- function(k) {
mkinpredict(SFO,
c(k_parent = k),
c(parent = 100),
sampling_times)
}
ds_me_sfo <- mapply(pred_sfo, k_in, SIMPLIFY = FALSE)
add_err_5 <- function(i) {
add_err(ds_me_sfo[[i]], sdfunc = function(value) 5, n = 3, seed = i + 1)
}
ds_me_sfo_5 <- sapply(1:5, add_err_5)
names(ds_me_sfo_5) <- paste("Dataset", 1:15)
dimnames(ds_me_sfo_5) <- list(Subset = 1:3, DT50 = dt50_in)
f_me_sfo_5 <- mmkin("SFO", ds_me_sfo_5, quiet = TRUE)
ds_me_sfo_5_grouped_mkin <- nlme_data(f_me_sfo_5)
ds_me_sfo_5_mean_dp <- mean_degparms(f_me_sfo_5)
me_sfo_function <- nlme_function(f_me_sfo_5)
assign("me_sfo_function", me_sfo_function, pos = globalenv())
f_nlme_sfo_5_all_mkin <- nlme(value ~ me_sfo_function(name, time,
parent_0, log_k_parent_sink),
data = ds_me_sfo_5_grouped_mkin,
fixed = parent_0 + log_k_parent_sink ~ 1,
random = pdDiag(parent_0 + log_k_parent_sink ~ 1),
start = ds_me_sfo_5_mean_dp)
f_nlme_sfo_5 <- nlme(value ~ SSasymp(time, 0, parent_0, log_k_parent_sink),
data = ds_me_sfo_5_grouped_mkin,
fixed = parent_0 + log_k_parent_sink ~ 1,
random = pdDiag(parent_0 + log_k_parent_sink ~ 1),
start = ds_me_sfo_5_mean_dp)
expect_equal(f_nlme_sfo_5_all_mkin$coefficients, f_nlme_sfo_5$coefficients)
# With less ideal starting values we get fits with lower AIC (not shown)
f_nlme_sfo_5_all_mkin_nostart <- nlme(value ~ me_sfo_function(name, time,
parent_0, log_k_parent_sink),
data = ds_me_sfo_5_grouped_mkin,
fixed = parent_0 + log_k_parent_sink ~ 1,
random = pdDiag(parent_0 + log_k_parent_sink ~ 1),
start = c(parent_0 = 100, log_k_parent_sink = log(0.1)))
f_nlme_sfo_5_nostart <- nlme(value ~ SSasymp(time, 0, parent_0, log_k_parent_sink),
data = ds_me_sfo_5_grouped_mkin,
fixed = parent_0 + log_k_parent_sink ~ 1,
random = pdDiag(parent_0 + log_k_parent_sink ~ 1),
start = c(parent_0 = 100, log_k_parent_sink = log(0.1)))
expect_equal(f_nlme_sfo_5_all_mkin_nostart$coefficients, f_nlme_sfo_5_nostart$coefficients)
})
|