1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
# Copyright (C) 2016-2019 Johannes Ranke
# Contact: jranke@uni-bremen.de
# This file is part of the R package mkin
# mkin is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <http://www.gnu.org/licenses/>
context("Calculation of maximum time weighted average concentrations (TWAs)")
test_that("Time weighted average concentrations are correct", {
skip_on_cran()
outtimes_10 <- seq(0, 10, length.out = 10000)
ds <- "FOCUS_C"
for (model in models) {
fit <- fits[[model, ds]]
bpar <- summary(fit)$bpar[, "Estimate"]
pred_10 <- mkinpredict(fit$mkinmod,
odeparms = bpar[2:length(bpar)],
odeini = c(parent = bpar[[1]]),
outtimes = outtimes_10)
twa_num <- mean(pred_10$parent)
names(twa_num) <- 10
twa_ana <- max_twa_parent(fit, 10)
# Test for absolute difference (scale = 1)
# The tolerance can be reduced if the length of outtimes is increased,
# but this needs more computing time so we stay with lenght.out = 10k
expect_equal(twa_num, twa_ana, tolerance = 0.003, scale = 1)
}
})
context("Summary")
test_that("Summaries are reproducible", {
fit <- fits[["DFOP", "FOCUS_C"]]
test_summary <- summary(fit)
test_summary$fit_version <- "Dummy 0.0 for testing"
test_summary$fit_Rversion <- "Dummy R version for testing"
test_summary$date.fit <- "Dummy date for testing"
test_summary$date.summary <- "Dummy date for testing"
test_summary$calls <- "test 0"
test_summary$Corr <- signif(test_summary$Corr, 1)
test_summary$time <- c(elapsed = "test time 0")
# The correlation matrix is quite platform dependent
# It differs between i386 and amd64 on Windows
# and between Travis and my own Linux system
test_summary$Corr <- NULL
expect_known_output(print(test_summary), "summary_DFOP_FOCUS_C.txt")
test_summary_2 <- summary(f_sfo_sfo_eigen)
test_summary_2$fit_version <- "Dummy 0.0 for testing"
test_summary_2$fit_Rversion <- "Dummy R version for testing"
test_summary_2$date.fit <- "Dummy date for testing"
test_summary_2$date.summary <- "Dummy date for testing"
test_summary_2$calls <- "test 0"
test_summary_2$time <- c(elapsed = "test time 0")
# The correlation matrix is quite platform dependent
# It differs between i386 and amd64 on Windows
# and between Travis and my own Linux system
# Even more so when using the Eigen method
test_summary_2$Corr <- NULL
expect_known_output(print(test_summary_2), "summary_DFOP_FOCUS_D_eigen.txt")
test_summary_3 <- summary(f_sfo_sfo_desolve)
test_summary_3$fit_version <- "Dummy 0.0 for testing"
test_summary_3$fit_Rversion <- "Dummy R version for testing"
test_summary_3$date.fit <- "Dummy date for testing"
test_summary_3$date.summary <- "Dummy date for testing"
test_summary_3$calls <- "test 0"
test_summary_3$time <- c(elapsed = "test time 0")
# The correlation matrix is quite platform dependent
# It differs between i386 and amd64 on Windows
# and between Travis and my own Linux system
test_summary_3$Corr <- NULL
expect_known_output(print(test_summary_3), "summary_DFOP_FOCUS_D_deSolve.txt")
})
context("Plotting")
test_that("Plotting mkinfit and mmkin objects is reproducible", {
skip_on_cran()
plot_default_FOCUS_C_SFO <- function() plot(fits[["SFO", "FOCUS_C"]])
plot_res_FOCUS_C_SFO <- function() plot(fits[["SFO", "FOCUS_C"]], show_residuals = TRUE)
plot_sep_FOCUS_C_SFO <- function() plot_sep(fits[["SFO", "FOCUS_C"]])
mkinparplot_FOCUS_C_SFO <- function() mkinparplot(fits[["SFO", "FOCUS_C"]])
mkinerrplot_FOCUS_C_SFO <- function() mkinerrplot(fits[["SFO", "FOCUS_C"]])
mmkin_FOCUS_C <- function() plot(fits[, "FOCUS_C"])
mmkin_SFO <- function() plot(fits["SFO",])
fit_D_obs_eigen <- suppressWarnings(mkinfit(SFO_SFO, FOCUS_2006_D, error_model = "obs", quiet = TRUE))
fit_C_tc <- mkinfit("SFO", FOCUS_2006_C, error_model = "tc", quiet = TRUE)
plot_errmod_fit_D_obs_eigen <- function() plot_err(fit_D_obs_eigen, sep_obs = FALSE)
plot_errmod_fit_C_tc <- function() plot_err(fit_C_tc)
plot_res_sfo_sfo <- function() plot_res(f_sfo_sfo_desolve)
plot_err_sfo_sfo <- function() plot_err(f_sfo_sfo_desolve)
plot_errmod_fit_obs_1 <- function() plot_err(fit_obs_1, sep_obs = FALSE)
plot_errmod_fit_tc_1 <- function() plot_err(fit_tc_1, sep_obs = FALSE)
vdiffr::expect_doppelganger("mkinfit plot for FOCUS C with defaults", plot_default_FOCUS_C_SFO)
vdiffr::expect_doppelganger("mkinfit plot for FOCUS C with residuals like in gmkin", plot_res_FOCUS_C_SFO)
vdiffr::expect_doppelganger("mkinfit plot for FOCUS C with sep = TRUE", plot_sep_FOCUS_C_SFO)
vdiffr::expect_doppelganger("mkinparplot for FOCUS C SFO", mkinparplot_FOCUS_C_SFO)
vdiffr::expect_doppelganger("mkinerrplot for FOCUS C SFO", mkinerrplot_FOCUS_C_SFO)
vdiffr::expect_doppelganger("mmkin plot for FOCUS C", mmkin_FOCUS_C)
vdiffr::expect_doppelganger("mmkin plot for SFO (FOCUS C and D)", mmkin_SFO)
vdiffr::expect_doppelganger("plot_errmod with FOCUS C tc", plot_errmod_fit_C_tc)
skip_on_travis() # Still not working on Travis, maybe because of deSolve producing
# different results when not working with a compiled model or eigenvalues
vdiffr::expect_doppelganger("plot_errmod with FOCUS D obs eigen", plot_errmod_fit_D_obs_eigen)
vdiffr::expect_doppelganger("plot_res for FOCUS D", plot_res_sfo_sfo)
vdiffr::expect_doppelganger("plot_err for FOCUS D", plot_err_sfo_sfo)
vdiffr::expect_doppelganger("plot_errmod with SFO_lin_a_tc", plot_errmod_fit_tc_1)
vdiffr::expect_doppelganger("plot_errmod with SFO_lin_a_obs", plot_errmod_fit_obs_1)
})
context("AIC calculation")
test_that("The AIC is reproducible", {
expect_equivalent(AIC(fits[["SFO", "FOCUS_C"]]), 59.3, scale = 1, tolerance = 0.1)
expect_equivalent(AIC(fits[, "FOCUS_C"]),
data.frame(df = c(3, 4, 5, 5), AIC = c(59.3, 44.7, 29.0, 39.2)),
scale = 1, tolerance = 0.1)
expect_error(AIC(fits["SFO", ]), "column object")
expect_equivalent(BIC(fits[, "FOCUS_C"]),
data.frame(df = c(3, 4, 5, 5), AIC = c(59.9, 45.5, 30.0, 40.2)),
scale = 1, tolerance = 0.1)
})
|