aboutsummaryrefslogtreecommitdiff
path: root/tests/testthat/test_plots_summary_twa.R
blob: bc3d29a8a0a5043a85afe91334ebb38f97945424 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
context("Calculation of maximum time weighted average concentrations (TWAs)")

test_that("Time weighted average concentrations are correct", {
  skip_on_cran()

  outtimes_10 <- seq(0, 10, length.out = 10000)

  ds <- "FOCUS_C"
  for (model in models) {
    fit <- fits[[model, ds]]
    bpar <- summary(fit)$bpar[, "Estimate"]
    pred_10 <- mkinpredict(fit$mkinmod,
                odeparms = bpar[2:length(bpar)],
                odeini = c(parent = bpar[[1]]),
                outtimes = outtimes_10)
    twa_num <- mean(pred_10[, "parent"])
    names(twa_num) <- 10
    twa_ana <- max_twa_parent(fit, 10)

    # Test for absolute difference (scale = 1)
    # The tolerance can be reduced if the length of outtimes is increased,
    # but this needs more computing time so we stay with lenght.out = 10k
    expect_equal(twa_num, twa_ana, tolerance = 0.003, scale = 1)
  }
})

context("Summary")

test_that("Summaries are reproducible", {
  fit <- fits[["DFOP", "FOCUS_C"]]
  test_summary <- summary(fit)
  test_summary$fit_version <- "Dummy 0.0 for testing"
  test_summary$fit_Rversion <- "Dummy R version for testing"
  test_summary$date.fit <- "Dummy date for testing"
  test_summary$date.summary <- "Dummy date for testing"
  test_summary$calls <- "test 0"
  test_summary$Corr <- signif(test_summary$Corr, 1)
  test_summary$time <- c(elapsed = "test time 0")
  # The correlation matrix is quite platform dependent
  # It differs between i386 and amd64 on Windows
  # and between Travis and my own Linux system
  test_summary$Corr <- "Correlation matrix is platform dependent, not tested"
  expect_known_output(print(test_summary), "summary_DFOP_FOCUS_C.txt")

  test_summary_2 <- summary(f_sfo_sfo_eigen)
  test_summary_2$fit_version <- "Dummy 0.0 for testing"
  test_summary_2$fit_Rversion <- "Dummy R version for testing"
  test_summary_2$date.fit <- "Dummy date for testing"
  test_summary_2$date.summary <- "Dummy date for testing"
  test_summary_2$calls <- "test 0"
  test_summary_2$time <- c(elapsed = "test time 0")
  # The correlation matrix is quite platform dependent
  # It differs between i386 and amd64 on Windows
  # and between Travis and my own Linux system
  # Even more so when using the Eigen method
  test_summary_2$Corr <- "Correlation matrix is platform dependent, not tested"
  # The residuals for this method are also platform sensitive
  test_summary_2$data$residual <- "not tested"
  expect_known_output(print(test_summary_2), "summary_DFOP_FOCUS_D_eigen.txt")

  test_summary_3 <- summary(f_sfo_sfo_desolve)
  test_summary_3$fit_version <- "Dummy 0.0 for testing"
  test_summary_3$fit_Rversion <- "Dummy R version for testing"
  test_summary_3$date.fit <- "Dummy date for testing"
  test_summary_3$date.summary <- "Dummy date for testing"
  test_summary_3$calls <- "test 0"
  test_summary_3$time <- c(elapsed = "test time 0")
  # The correlation matrix is quite platform dependent
  # It differs between i386 and amd64 on Windows
  # and between Travis and my own Linux system
  test_summary_3$Corr <- "Correlation matrix is platform dependent, not tested"
  expect_known_output(print(test_summary_3), "summary_DFOP_FOCUS_D_deSolve.txt")
})

context("Plotting")

test_that("Plotting mkinfit and mmkin objects is reproducible", {
  skip_on_cran()
  plot_default_FOCUS_C_SFO <- function() plot(fits[["SFO", "FOCUS_C"]])
  plot_res_FOCUS_C_SFO <- function() plot(fits[["SFO", "FOCUS_C"]], show_residuals = TRUE)
  plot_res_FOCUS_C_SFO_2 <- function() plot_res(fits[["SFO", "FOCUS_C"]])
  plot_sep_FOCUS_C_SFO <- function() plot_sep(fits[["SFO", "FOCUS_C"]])
  mkinparplot_FOCUS_C_SFO <- function() mkinparplot(fits[["SFO", "FOCUS_C"]])
  mkinerrplot_FOCUS_C_SFO <- function() mkinerrplot(fits[["SFO", "FOCUS_C"]])
  mmkin_FOCUS_C <- function() plot(fits[, "FOCUS_C"])
  mmkin_SFO <- function() plot(fits["SFO",])
  fit_D_obs_eigen <- suppressWarnings(mkinfit(SFO_SFO, FOCUS_2006_D, error_model = "obs", quiet = TRUE))
  fit_C_tc <- mkinfit("SFO", FOCUS_2006_C, error_model = "tc", quiet = TRUE)

  plot_errmod_fit_D_obs_eigen <- function() plot_err(fit_D_obs_eigen, sep_obs = FALSE)
  plot_errmod_fit_C_tc <- function() plot_err(fit_C_tc)

  plot_res_sfo_sfo <- function() plot_res(f_sfo_sfo_desolve)
  plot_err_sfo_sfo <- function() plot_err(f_sfo_sfo_desolve)
  plot_errmod_fit_obs_1 <- function() plot_err(fit_obs_1, sep_obs = FALSE)
  plot_errmod_fit_tc_1 <- function() plot_err(fit_tc_1, sep_obs = FALSE)

  vdiffr::expect_doppelganger("mkinfit plot for FOCUS C with defaults", plot_default_FOCUS_C_SFO)
  vdiffr::expect_doppelganger("mkinfit plot for FOCUS C with residuals like in gmkin", plot_res_FOCUS_C_SFO)
  vdiffr::expect_doppelganger("plot_res for FOCUS C", plot_res_FOCUS_C_SFO_2)
  vdiffr::expect_doppelganger("mkinfit plot for FOCUS C with sep = TRUE", plot_sep_FOCUS_C_SFO)
  vdiffr::expect_doppelganger("mkinparplot for FOCUS C SFO", mkinparplot_FOCUS_C_SFO)
  vdiffr::expect_doppelganger("mkinerrplot for FOCUS C SFO", mkinerrplot_FOCUS_C_SFO)
  vdiffr::expect_doppelganger("mmkin plot for FOCUS C", mmkin_FOCUS_C)
  vdiffr::expect_doppelganger("mmkin plot for SFO (FOCUS C and D)", mmkin_SFO)
  vdiffr::expect_doppelganger("plot_errmod with FOCUS C tc", plot_errmod_fit_C_tc)
  skip_on_travis() # Still not working on Travis, maybe because of deSolve producing
  # different results when not working with a compiled model or eigenvalues
  vdiffr::expect_doppelganger("plot_errmod with FOCUS D obs eigen", plot_errmod_fit_D_obs_eigen)
  vdiffr::expect_doppelganger("plot_res for FOCUS D", plot_res_sfo_sfo)
  vdiffr::expect_doppelganger("plot_err for FOCUS D", plot_err_sfo_sfo)
  vdiffr::expect_doppelganger("plot_errmod with SFO_lin_a_tc", plot_errmod_fit_tc_1)
  vdiffr::expect_doppelganger("plot_errmod with SFO_lin_a_obs", plot_errmod_fit_obs_1)
})

context("AIC calculation")

test_that("The AIC is reproducible", {
  expect_equivalent(AIC(fits[["SFO", "FOCUS_C"]]), 59.3, scale = 1, tolerance = 0.1)
  expect_equivalent(AIC(fits[, "FOCUS_C"]),
                    data.frame(df = c(3, 4, 5, 5), AIC = c(59.3, 44.7, 29.0, 39.2)),
                    scale = 1, tolerance = 0.1)
  expect_error(AIC(fits["SFO", ]), "column object")
  expect_equivalent(BIC(fits[, "FOCUS_C"]),
                    data.frame(df = c(3, 4, 5, 5), AIC = c(59.9, 45.5, 30.0, 40.2)),
                    scale = 1, tolerance = 0.1)
})

Contact - Imprint