1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
context("Nonlinear mixed effects models fitted with SAEM from saemix")
set.seed(123456)
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
n <- n_biphasic <- 15
log_sd <- 0.3
err_1 = list(const = 1, prop = 0.05)
tc <- function(value) sigma_twocomp(value, err_1$const, err_1$prop)
const <- function(value) 2
SFO <- mkinmod(parent = mkinsub("SFO"))
k_parent = rlnorm(n, log(0.03), log_sd)
ds_sfo <- lapply(1:n, function(i) {
ds_mean <- mkinpredict(SFO, c(k_parent = k_parent[i]),
c(parent = 100), sampling_times)
add_err(ds_mean, tc, n = 1)[[1]]
})
DFOP <- mkinmod(parent = mkinsub("DFOP"))
dfop_pop <- list(parent_0 = 100, k1 = 0.06, k2 = 0.015, g = 0.4)
dfop_parms <- as.matrix(data.frame(
k1 = rlnorm(n, log(dfop_pop$k1), log_sd),
k2 = rlnorm(n, log(dfop_pop$k2), log_sd),
g = plogis(rnorm(n, qlogis(dfop_pop$g), log_sd))))
ds_dfop <- lapply(1:n, function(i) {
ds_mean <- mkinpredict(DFOP, dfop_parms[i, ],
c(parent = dfop_pop$parent_0), sampling_times)
add_err(ds_mean, const, n = 1)[[1]]
})
set.seed(123456)
DFOP_SFO <- mkinmod(
parent = mkinsub("DFOP", "m1"),
m1 = mkinsub("SFO"),
quiet = TRUE)
syn_biphasic_parms <- as.matrix(data.frame(
k1 = rlnorm(n_biphasic, log(0.05), log_sd),
k2 = rlnorm(n_biphasic, log(0.01), log_sd),
g = plogis(rnorm(n_biphasic, 0, log_sd)),
f_parent_to_m1 = plogis(rnorm(n_biphasic, 0, log_sd)),
k_m1 = rlnorm(n_biphasic, log(0.002), log_sd)))
ds_biphasic_mean <- lapply(1:n_biphasic,
function(i) {
mkinpredict(DFOP_SFO, syn_biphasic_parms[i, ],
c(parent = 100, m1 = 0), sampling_times)
}
)
ds_biphasic <- lapply(ds_biphasic_mean, function(ds) {
add_err(ds,
sdfunc = function(value) sqrt(err_1$const^2 + value^2 * err_1$prop^2),
n = 1, secondary = "m1")[[1]]
})
test_that("Parent only models can be fitted with saemix", {
# Some fits were done in the setup script
mmkin_sfo_2 <- mmkin("SFO", ds_sfo, fixed_initials = c(parent = 100), quiet = TRUE)
sfo_saemix_2 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "mkin")
sfo_saemix_3 <- expect_error(saem(mmkin_sfo_2, quiet = TRUE), "at least two parameters")
s_sfo_s1 <- summary(sfo_saemix_1)
s_sfo_s2 <- summary(sfo_saemix_2)
sfo_nlme_1 <- expect_warning(nlme(mmkin_sfo_1), "not converge")
s_sfo_n <- summary(sfo_nlme_1)
# Compare with input
expect_equal(round(s_sfo_s2$confint_ranef["SD.log_k_parent", "est."], 1), 0.3)
# k_parent is a bit different from input 0.03 here
expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), 0.035)
expect_equal(round(s_sfo_s2$confint_back["k_parent", "est."], 3), 0.035)
# But the result is pretty unanimous between methods
expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3),
round(s_sfo_s2$confint_back["k_parent", "est."], 3))
expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3),
round(s_sfo_n$confint_back["k_parent", "est."], 3))
mmkin_dfop_1 <- mmkin("DFOP", ds_dfop, quiet = TRUE)
dfop_saemix_1 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "mkin")
dfop_saemix_2 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "saemix")
dfop_nlme_1 <- nlme(mmkin_dfop_1)
s_dfop_s1 <- summary(dfop_saemix_1)
s_dfop_s2 <- summary(dfop_saemix_2)
s_dfop_n <- summary(dfop_nlme_1)
dfop_pop <- as.numeric(dfop_pop)
expect_true(all(s_dfop_s1$confint_back[, "lower"] < dfop_pop))
expect_true(all(s_dfop_s1$confint_back[, "upper"] > dfop_pop))
expect_true(all(s_dfop_s2$confint_back[, "lower"] < dfop_pop))
expect_true(all(s_dfop_s2$confint_back[, "upper"] > dfop_pop))
# We get < 20% deviations with transformations made in mkin
rel_diff_1 <- (s_dfop_s1$confint_back[, "est."] - dfop_pop) / dfop_pop
expect_true(all(rel_diff_1 < 0.2))
# We get < 8% deviations with transformations made in saemix
rel_diff_2 <- (s_dfop_s2$confint_back[, "est."] - dfop_pop) / dfop_pop
expect_true(all(rel_diff_2 < 0.08))
})
test_that("Simple models with metabolite can be fitted with saemix", {
expect_known_output(print(sfo_saemix_1, digits = 1), "print_sfo_saemix_1.txt")
test_summary <- summary(saem_biphasic_s)
test_summary$saemixversion <- "Dummy 0.0 for testing"
test_summary$mkinversion <- "Dummy 0.0 for testing"
test_summary$Rversion <- "Dummy R version for testing"
test_summary$date.fit <- "Dummy date for testing"
test_summary$date.summary <- "Dummy date for testing"
test_summary$time <- c(elapsed = "test time 0")
expect_known_output(print(test_summary, digits = 2), "summary_saem_biphasic_s.txt")
dfop_sfo_pop <- as.numeric(dfop_sfo_pop)
ci_dfop_sfo_s_s <- summary(saem_biphasic_s)$confint_back
expect_true(all(ci_dfop_sfo_s_s[, "lower"] < dfop_sfo_pop))
expect_true(all(ci_dfop_sfo_s_s[, "upper"] > dfop_sfo_pop))
# The following does not work, as k1 and k2 are not fitted well
ci_dfop_sfo_s_m <- summary(saem_biphasic_m)$confint_back
# expect_true(all(ci_dfop_sfo_s_m[, "lower"] < dfop_sfo_pop))
# expect_true(all(ci_dfop_sfo_s_m[, "upper"] > dfop_sfo_pop))
# Somehow this does not work at the moment. But it took forever (~ 10 min) anyways...
#saem_biphasic_2 <- saem(mmkin_biphasic, solution_type = "deSolve", quiet = TRUE)
})
|