1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
context("saemix parent models")
test_that("Parent fits using saemix are correctly implemented", {
skip_on_cran()
expect_error(saem(fits), "Only row objects")
# Some fits were done in the setup script
mmkin_sfo_2 <- update(mmkin_sfo_1, fixed_initials = c(parent = 100))
expect_error(update(mmkin_sfo_1, models = c("SFOOO")), "Please supply models.*")
sfo_saem_2 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "mkin")
sfo_saem_3 <- expect_error(saem(mmkin_sfo_2, quiet = TRUE), "at least two parameters")
expect_equal(endpoints(sfo_saem_1), endpoints(sfo_saem_2), tol = 0.01)
s_sfo_s1 <- summary(sfo_saem_1)
s_sfo_s2 <- summary(sfo_saem_2)
sfo_nlme_1 <- expect_warning(nlme(mmkin_sfo_1), "not converge")
s_sfo_n <- summary(sfo_nlme_1)
# Compare with input
expect_equal(round(s_sfo_s2$confint_ranef["SD.log_k_parent", "est."], 1), 0.3)
# k_parent is a bit different from input 0.03 here
expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), 0.035)
expect_equal(round(s_sfo_s2$confint_back["k_parent", "est."], 3), 0.035)
# But the result is pretty unanimous between methods
expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3),
round(s_sfo_s2$confint_back["k_parent", "est."], 3))
expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3),
round(s_sfo_n$confint_back["k_parent", "est."], 3))
mmkin_fomc_1 <- mmkin("FOMC", ds_fomc, quiet = TRUE, error_model = "tc", cores = n_cores)
fomc_saem_1 <- saem(mmkin_fomc_1, quiet = TRUE)
ci_fomc_s1 <- summary(fomc_saem_1)$confint_back
fomc_pop <- as.numeric(fomc_pop)
expect_true(all(ci_fomc_s1[, "lower"] < fomc_pop))
expect_true(all(ci_fomc_s1[, "upper"] > fomc_pop))
mmkin_fomc_2 <- update(mmkin_fomc_1, state.ini = 100, fixed_initials = "parent")
fomc_saem_2 <- saem(mmkin_fomc_2, quiet = TRUE, transformations = "mkin")
ci_fomc_s2 <- summary(fomc_saem_2)$confint_back
expect_true(all(ci_fomc_s2[, "lower"] < fomc_pop[2:3]))
expect_true(all(ci_fomc_s2[, "upper"] > fomc_pop[2:3]))
s_dfop_s1 <- summary(dfop_saemix_1)
s_dfop_s2 <- summary(dfop_saemix_2)
s_dfop_n <- summary(dfop_nlme_1)
dfop_pop <- as.numeric(dfop_pop)
expect_true(all(s_dfop_s1$confint_back[, "lower"] < dfop_pop))
expect_true(all(s_dfop_s1$confint_back[, "upper"] > dfop_pop))
expect_true(all(s_dfop_s2$confint_back[, "lower"] < dfop_pop))
expect_true(all(s_dfop_s2$confint_back[, "upper"] > dfop_pop))
dfop_mmkin_means_trans_tested <- mean_degparms(mmkin_dfop_1, test_log_parms = TRUE)
dfop_mmkin_means_trans <- apply(parms(mmkin_dfop_1, transformed = TRUE), 1, mean)
dfop_mmkin_means_tested <- backtransform_odeparms(dfop_mmkin_means_trans_tested, mmkin_dfop_1$mkinmod)
dfop_mmkin_means <- backtransform_odeparms(dfop_mmkin_means_trans, mmkin_dfop_1$mkinmod)
# We get < 20% deviations for parent_0 and k1 by averaging the transformed parameters
# If we average only parameters passing the t-test, the deviation for k2 is also < 20%
rel_diff_mmkin <- (dfop_mmkin_means - dfop_pop) / dfop_pop
rel_diff_mmkin_tested <- (dfop_mmkin_means_tested - dfop_pop) / dfop_pop
expect_true(all(rel_diff_mmkin[c("parent_0", "k1")] < 0.20))
expect_true(all(rel_diff_mmkin_tested[c("parent_0", "k1", "k2")] < 0.20))
# We get < 20% deviations with transformations made in mkin
rel_diff_1 <- (s_dfop_s1$confint_back[, "est."] - dfop_pop) / dfop_pop
expect_true(all(rel_diff_1 < 0.20))
# We get < 20% deviations with transformations made in saemix
rel_diff_2 <- (s_dfop_s2$confint_back[, "est."] - dfop_pop) / dfop_pop
expect_true(all(rel_diff_2 < 0.2))
mmkin_hs_1 <- mmkin("HS", ds_hs, quiet = TRUE, error_model = "const", cores = n_cores)
hs_saem_1 <- saem(mmkin_hs_1, quiet = TRUE)
hs_saem_2 <- saem(mmkin_hs_1, quiet = TRUE, transformations = "mkin")
expect_equal(endpoints(hs_saem_1), endpoints(hs_saem_2), tol = 0.01)
ci_hs_s1 <- summary(hs_saem_1)$confint_back
hs_pop <- as.numeric(hs_pop)
#expect_true(all(ci_hs_s1[, "lower"] < hs_pop)) # k1 is overestimated
expect_true(all(ci_hs_s1[, "upper"] > hs_pop))
mmkin_hs_2 <- update(mmkin_hs_1, state.ini = 100, fixed_initials = "parent")
hs_saem_3 <- saem(mmkin_hs_2, quiet = TRUE)
ci_hs_s3 <- summary(hs_saem_3)$confint_back
#expect_true(all(ci_hs_s3[, "lower"] < hs_pop[2:4])) # k1 again overestimated
expect_true(all(ci_hs_s3[, "upper"] > hs_pop[2:4]))
})
test_that("We can also use mkin solution methods for saem", {
expect_error(saem(mmkin_dfop_1, quiet = TRUE, transformations = "saemix", solution_type = "analytical"),
"saemix transformations is only supported if an analytical solution is implemented"
)
skip_on_cran() # This still takes almost 2.5 minutes although we do not solve ODEs
dfop_saemix_3 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "mkin",
solution_type = "analytical")
distimes_dfop <- endpoints(dfop_saemix_1)$distimes
distimes_dfop_analytical <- endpoints(dfop_saemix_3)$distimes
rel_diff <- abs(distimes_dfop_analytical - distimes_dfop) / distimes_dfop
expect_true(all(rel_diff < 0.01))
})
|