aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_D.html
blob: 074847f07258e89a12cfa4f93c8d20f0681db56e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<title>Example evaluation of FOCUS Example Dataset D</title>

<script type="text/javascript">
window.onload = function() {
  var imgs = document.getElementsByTagName('img'), i, img;
  for (i = 0; i < imgs.length; i++) {
    img = imgs[i];
    // center an image if it is the only element of its parent
    if (img.parentElement.childElementCount === 1)
      img.parentElement.style.textAlign = 'center';
  }
};
</script>

<!-- Styles for R syntax highlighter -->
<style type="text/css">
   pre .operator,
   pre .paren {
     color: rgb(104, 118, 135)
   }

   pre .literal {
     color: #990073
   }

   pre .number {
     color: #099;
   }

   pre .comment {
     color: #998;
     font-style: italic
   }

   pre .keyword {
     color: #900;
     font-weight: bold
   }

   pre .identifier {
     color: rgb(0, 0, 0);
   }

   pre .string {
     color: #d14;
   }
</style>

<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&amp;").replace(/</gm,"&lt;")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>



<style type="text/css">
body, td {
   font-family: sans-serif;
   background-color: white;
   font-size: 13px;
}

body {
  max-width: 800px;
  margin: auto;
  padding: 1em;
  line-height: 20px;
}

tt, code, pre {
   font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}

h1 {
   font-size:2.2em;
}

h2 {
   font-size:1.8em;
}

h3 {
   font-size:1.4em;
}

h4 {
   font-size:1.0em;
}

h5 {
   font-size:0.9em;
}

h6 {
   font-size:0.8em;
}

a:visited {
   color: rgb(50%, 0%, 50%);
}

pre, img {
  max-width: 100%;
}
pre {
  overflow-x: auto;
}
pre code {
   display: block; padding: 0.5em;
}

code {
  font-size: 92%;
  border: 1px solid #ccc;
}

code[class] {
  background-color: #F8F8F8;
}

table, td, th {
  border: none;
}

blockquote {
   color:#666666;
   margin:0;
   padding-left: 1em;
   border-left: 0.5em #EEE solid;
}

hr {
   height: 0px;
   border-bottom: none;
   border-top-width: thin;
   border-top-style: dotted;
   border-top-color: #999999;
}

@media print {
   * {
      background: transparent !important;
      color: black !important;
      filter:none !important;
      -ms-filter: none !important;
   }

   body {
      font-size:12pt;
      max-width:100%;
   }

   a, a:visited {
      text-decoration: underline;
   }

   hr {
      visibility: hidden;
      page-break-before: always;
   }

   pre, blockquote {
      padding-right: 1em;
      page-break-inside: avoid;
   }

   tr, img {
      page-break-inside: avoid;
   }

   img {
      max-width: 100% !important;
   }

   @page :left {
      margin: 15mm 20mm 15mm 10mm;
   }

   @page :right {
      margin: 15mm 10mm 15mm 20mm;
   }

   p, h2, h3 {
      orphans: 3; widows: 3;
   }

   h2, h3 {
      page-break-after: avoid;
   }
}
</style>



</head>

<body>
<!--
%\VignetteEngine{knitr::knitr}
%\VignetteIndexEntry{Simple Evaluation of FOCUS Example Dataset D}
-->

<h1>Example evaluation of FOCUS Example Dataset D</h1>

<p>This is just a very simple vignette showing how to fit a degradation model for a parent 
compound with one transformation product using <code>mkin</code>.  After loading the
library we look a the data. We have observed concentrations in the column named
<code>value</code> at the times specified in column <code>time</code> for the two observed variables
named <code>parent</code> and <code>m1</code>.</p>

<pre><code class="r">library(&quot;mkin&quot;)
print(FOCUS_2006_D)
</code></pre>

<pre><code>##      name time  value
## 1  parent    0  99.46
## 2  parent    0 102.04
## 3  parent    1  93.50
## 4  parent    1  92.50
## 5  parent    3  63.23
## 6  parent    3  68.99
## 7  parent    7  52.32
## 8  parent    7  55.13
## 9  parent   14  27.27
## 10 parent   14  26.64
## 11 parent   21  11.50
## 12 parent   21  11.64
## 13 parent   35   2.85
## 14 parent   35   2.91
## 15 parent   50   0.69
## 16 parent   50   0.63
## 17 parent   75   0.05
## 18 parent   75   0.06
## 19 parent  100     NA
## 20 parent  100     NA
## 21 parent  120     NA
## 22 parent  120     NA
## 23     m1    0   0.00
## 24     m1    0   0.00
## 25     m1    1   4.84
## 26     m1    1   5.64
## 27     m1    3  12.91
## 28     m1    3  12.96
## 29     m1    7  22.97
## 30     m1    7  24.47
## 31     m1   14  41.69
## 32     m1   14  33.21
## 33     m1   21  44.37
## 34     m1   21  46.44
## 35     m1   35  41.22
## 36     m1   35  37.95
## 37     m1   50  41.19
## 38     m1   50  40.01
## 39     m1   75  40.09
## 40     m1   75  33.85
## 41     m1  100  31.04
## 42     m1  100  33.13
## 43     m1  120  25.15
## 44     m1  120  33.31
</code></pre>

<p>Next we specify the degradation model: The parent compound degrades with simple first-order
kinetics (SFO) to one metabolite named m1, which also degrades with SFO kinetics.</p>

<p>The call to mkinmod returns a degradation model. The differential equations represented in 
R code can be found in the character vector <code>$diffs</code> of the <code>mkinmod</code> object. If
the gcc compiler is installed and functional, the differential equation model
will be compiled from auto-generated C code.</p>

<pre><code class="r">SFO_SFO &lt;- mkinmod(parent = mkinsub(&quot;SFO&quot;, &quot;m1&quot;), m1 = mkinsub(&quot;SFO&quot;))
</code></pre>

<pre><code>## Compiling differential equation model from auto-generated C code...
</code></pre>

<pre><code class="r">print(SFO_SFO$diffs)
</code></pre>

<pre><code>##                                                       parent 
## &quot;d_parent = - k_parent_sink * parent - k_parent_m1 * parent&quot; 
##                                                           m1 
##             &quot;d_m1 = + k_parent_m1 * parent - k_m1_sink * m1&quot;
</code></pre>

<p>We do the fitting without progress report (<code>quiet = TRUE</code>).</p>

<pre><code class="r">fit &lt;- mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE)
</code></pre>

<p>A plot of the fit including a residual plot for both observed variables is obtained
using the <code>plot</code> method for <code>mkinfit</code> objects.</p>

<pre><code class="r">plot(fit, show_residuals = TRUE)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-5"/> </p>

<p>Confidence intervals for the parameter estimates are obtained using the <code>mkinparplot</code> function.</p>

<pre><code class="r">mkinparplot(fit)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-6"/> </p>

<p>A comprehensive report of the results is obtained using the <code>summary</code> method for <code>mkinfit</code>
objects.</p>

<pre><code class="r">summary(fit)
</code></pre>

<pre><code>## mkin version:    0.9.36 
## R version:       3.2.1 
## Date of fit:     Sun Jun 21 18:14:52 2015 
## Date of summary: Sun Jun 21 18:14:52 2015 
## 
## Equations:
## d_parent = - k_parent_sink * parent - k_parent_m1 * parent
## d_m1 = + k_parent_m1 * parent - k_m1_sink * m1
## 
## Model predictions using solution type deSolve 
## 
## Fitted with method Port using 153 model solutions performed in 0.733 s
## 
## Weighting: none
## 
## Starting values for parameters to be optimised:
##                  value   type
## parent_0      100.7500  state
## k_parent_sink   0.1000 deparm
## k_parent_m1     0.1001 deparm
## k_m1_sink       0.1002 deparm
## 
## Starting values for the transformed parameters actually optimised:
##                        value lower upper
## parent_0          100.750000  -Inf   Inf
## log_k_parent_sink  -2.302585  -Inf   Inf
## log_k_parent_m1    -2.301586  -Inf   Inf
## log_k_m1_sink      -2.300587  -Inf   Inf
## 
## Fixed parameter values:
##      value  type
## m1_0     0 state
## 
## Optimised, transformed parameters with symmetric confidence intervals:
##                   Estimate Std. Error  Lower   Upper
## parent_0            99.600    1.61400 96.330 102.900
## log_k_parent_sink   -3.038    0.07826 -3.197  -2.879
## log_k_parent_m1     -2.980    0.04124 -3.064  -2.897
## log_k_m1_sink       -5.248    0.13610 -5.523  -4.972
## 
## Parameter correlation:
##                   parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink
## parent_0           1.00000            0.6075        -0.06625       -0.1701
## log_k_parent_sink  0.60752            1.0000        -0.08740       -0.6253
## log_k_parent_m1   -0.06625           -0.0874         1.00000        0.4716
## log_k_m1_sink     -0.17006           -0.6253         0.47163        1.0000
## 
## Residual standard error: 3.211 on 36 degrees of freedom
## 
## Backtransformed parameters:
##   Confidence intervals for internally transformed parameters are asymmetric.
##   t-test (unrealistically) based on the assumption of normal distribution
##   for estimators of untransformed parameters.
##                Estimate t value    Pr(&gt;t)     Lower     Upper
## parent_0      99.600000  61.720 2.024e-38 96.330000 1.029e+02
## k_parent_sink  0.047920  12.780 3.050e-15  0.040890 5.616e-02
## k_parent_m1    0.050780  24.250 3.407e-24  0.046700 5.521e-02
## k_m1_sink      0.005261   7.349 5.758e-09  0.003992 6.933e-03
## 
## Chi2 error levels in percent:
##          err.min n.optim df
## All data   6.398       4 15
## parent     6.827       3  6
## m1         4.490       1  9
## 
## Resulting formation fractions:
##                 ff
## parent_sink 0.4855
## parent_m1   0.5145
## m1_sink     1.0000
## 
## Estimated disappearance times:
##           DT50   DT90
## parent   7.023  23.33
## m1     131.761 437.70
## 
## Data:
##  time variable observed predicted   residual
##     0   parent    99.46 9.960e+01 -1.385e-01
##     0   parent   102.04 9.960e+01  2.442e+00
##     1   parent    93.50 9.024e+01  3.262e+00
##     1   parent    92.50 9.024e+01  2.262e+00
##     3   parent    63.23 7.407e+01 -1.084e+01
##     3   parent    68.99 7.407e+01 -5.083e+00
##     7   parent    52.32 4.991e+01  2.408e+00
##     7   parent    55.13 4.991e+01  5.218e+00
##    14   parent    27.27 2.501e+01  2.257e+00
##    14   parent    26.64 2.501e+01  1.627e+00
##    21   parent    11.50 1.253e+01 -1.035e+00
##    21   parent    11.64 1.253e+01 -8.946e-01
##    35   parent     2.85 3.148e+00 -2.979e-01
##    35   parent     2.91 3.148e+00 -2.379e-01
##    50   parent     0.69 7.162e-01 -2.624e-02
##    50   parent     0.63 7.162e-01 -8.624e-02
##    75   parent     0.05 6.074e-02 -1.074e-02
##    75   parent     0.06 6.074e-02 -7.382e-04
##   100   parent       NA 5.151e-03         NA
##   100   parent       NA 5.151e-03         NA
##   120   parent       NA 7.155e-04         NA
##   120   parent       NA 7.155e-04         NA
##     0       m1     0.00 0.000e+00  0.000e+00
##     0       m1     0.00 0.000e+00  0.000e+00
##     1       m1     4.84 4.803e+00  3.704e-02
##     1       m1     5.64 4.803e+00  8.370e-01
##     3       m1    12.91 1.302e+01 -1.140e-01
##     3       m1    12.96 1.302e+01 -6.400e-02
##     7       m1    22.97 2.504e+01 -2.075e+00
##     7       m1    24.47 2.504e+01 -5.748e-01
##    14       m1    41.69 3.669e+01  5.000e+00
##    14       m1    33.21 3.669e+01 -3.480e+00
##    21       m1    44.37 4.165e+01  2.717e+00
##    21       m1    46.44 4.165e+01  4.787e+00
##    35       m1    41.22 4.331e+01 -2.093e+00
##    35       m1    37.95 4.331e+01 -5.363e+00
##    50       m1    41.19 4.122e+01 -2.831e-02
##    50       m1    40.01 4.122e+01 -1.208e+00
##    75       m1    40.09 3.645e+01  3.643e+00
##    75       m1    33.85 3.645e+01 -2.597e+00
##   100       m1    31.04 3.198e+01 -9.416e-01
##   100       m1    33.13 3.198e+01  1.148e+00
##   120       m1    25.15 2.879e+01 -3.640e+00
##   120       m1    33.31 2.879e+01  4.520e+00
</code></pre>

</body>

</html>

Contact - Imprint