aboutsummaryrefslogtreecommitdiff
path: root/vignettes/FOCUS_L.html
blob: 84a916520747760abc6791d6f9e1db26d1541db2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<title>Example evaluation of FOCUS Laboratory Data L1 to L3</title>

<script type="text/javascript">
window.onload = function() {
  var imgs = document.getElementsByTagName('img'), i, img;
  for (i = 0; i < imgs.length; i++) {
    img = imgs[i];
    // center an image if it is the only element of its parent
    if (img.parentElement.childElementCount === 1)
      img.parentElement.style.textAlign = 'center';
  }
};
</script>

<!-- Styles for R syntax highlighter -->
<style type="text/css">
   pre .operator,
   pre .paren {
     color: rgb(104, 118, 135)
   }

   pre .literal {
     color: #990073
   }

   pre .number {
     color: #099;
   }

   pre .comment {
     color: #998;
     font-style: italic
   }

   pre .keyword {
     color: #900;
     font-weight: bold
   }

   pre .identifier {
     color: rgb(0, 0, 0);
   }

   pre .string {
     color: #d14;
   }
</style>

<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&amp;").replace(/</gm,"&lt;")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>



<style type="text/css">
body, td {
   font-family: sans-serif;
   background-color: white;
   font-size: 13px;
}

body {
  max-width: 800px;
  margin: auto;
  padding: 1em;
  line-height: 20px;
}

tt, code, pre {
   font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}

h1 {
   font-size:2.2em;
}

h2 {
   font-size:1.8em;
}

h3 {
   font-size:1.4em;
}

h4 {
   font-size:1.0em;
}

h5 {
   font-size:0.9em;
}

h6 {
   font-size:0.8em;
}

a:visited {
   color: rgb(50%, 0%, 50%);
}

pre, img {
  max-width: 100%;
}
pre {
  overflow-x: auto;
}
pre code {
   display: block; padding: 0.5em;
}

code {
  font-size: 92%;
  border: 1px solid #ccc;
}

code[class] {
  background-color: #F8F8F8;
}

table, td, th {
  border: none;
}

blockquote {
   color:#666666;
   margin:0;
   padding-left: 1em;
   border-left: 0.5em #EEE solid;
}

hr {
   height: 0px;
   border-bottom: none;
   border-top-width: thin;
   border-top-style: dotted;
   border-top-color: #999999;
}

@media print {
   * {
      background: transparent !important;
      color: black !important;
      filter:none !important;
      -ms-filter: none !important;
   }

   body {
      font-size:12pt;
      max-width:100%;
   }

   a, a:visited {
      text-decoration: underline;
   }

   hr {
      visibility: hidden;
      page-break-before: always;
   }

   pre, blockquote {
      padding-right: 1em;
      page-break-inside: avoid;
   }

   tr, img {
      page-break-inside: avoid;
   }

   img {
      max-width: 100% !important;
   }

   @page :left {
      margin: 15mm 20mm 15mm 10mm;
   }

   @page :right {
      margin: 15mm 10mm 15mm 20mm;
   }

   p, h2, h3 {
      orphans: 3; widows: 3;
   }

   h2, h3 {
      page-break-after: avoid;
   }
}
</style>



</head>

<body>
<!--
%\VignetteEngine{knitr::knitr}
%\VignetteIndexEntry{Example evaluation of FOCUS Laboratory Data L1 to L3}
-->

<h1>Example evaluation of FOCUS Laboratory Data L1 to L3</h1>

<h2>Laboratory Data L1</h2>

<p>The following code defines example dataset L1 from the FOCUS kinetics
report, p. 284:</p>

<pre><code class="r">library(&quot;mkin&quot;)
FOCUS_2006_L1 = data.frame(
  t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2),
  parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6, 
             72.0, 71.9, 50.3, 59.4, 47.0, 45.1,
             27.7, 27.3, 10.0, 10.4, 2.9, 4.0))
FOCUS_2006_L1_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L1)
</code></pre>

<p>Here we use the assumptions of simple first order (SFO), the case of declining
rate constant over time (FOMC) and the case of two different phases of the
kinetics (DFOP). For a more detailed discussion of the models, please see the
FOCUS kinetics report.</p>

<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation like <code>SFO</code>
for parent only degradation models. The following two lines fit the model and
produce the summary report of the model fit. This covers the numerical analysis
given in the FOCUS report. </p>

<pre><code class="r">m.L1.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L1_mkin, quiet=TRUE)
summary(m.L1.SFO)
</code></pre>

<pre><code>## mkin version:    0.9.36 
## R version:       3.2.1 
## Date of fit:     Sun Jun 21 15:31:55 2015 
## Date of summary: Sun Jun 21 15:31:55 2015 
## 
## Equations:
## d_parent = - k_parent_sink * parent
## 
## Model predictions using solution type analytical 
## 
## Fitted with method Port using 37 model solutions performed in 0.084 s
## 
## Weighting: none
## 
## Starting values for parameters to be optimised:
##               value   type
## parent_0      89.85  state
## k_parent_sink  0.10 deparm
## 
## Starting values for the transformed parameters actually optimised:
##                       value lower upper
## parent_0          89.850000  -Inf   Inf
## log_k_parent_sink -2.302585  -Inf   Inf
## 
## Fixed parameter values:
## None
## 
## Optimised, transformed parameters with symmetric confidence intervals:
##                   Estimate Std. Error  Lower  Upper
## parent_0            92.470    1.36800 89.570 95.370
## log_k_parent_sink   -2.347    0.04057 -2.433 -2.261
## 
## Parameter correlation:
##                   parent_0 log_k_parent_sink
## parent_0            1.0000            0.6248
## log_k_parent_sink   0.6248            1.0000
## 
## Residual standard error: 2.948 on 16 degrees of freedom
## 
## Backtransformed parameters:
##   Confidence intervals for internally transformed parameters are asymmetric.
##   t-test (unrealistically) based on the assumption of normal distribution
##   for estimators of untransformed parameters.
##               Estimate t value    Pr(&gt;t)    Lower   Upper
## parent_0      92.47000   67.58 2.170e-21 89.57000 95.3700
## k_parent_sink  0.09561   24.65 1.867e-14  0.08773  0.1042
## 
## Chi2 error levels in percent:
##          err.min n.optim df
## All data   3.424       2  7
## parent     3.424       2  7
## 
## Resulting formation fractions:
##             ff
## parent_sink  1
## 
## Estimated disappearance times:
##         DT50  DT90
## parent 7.249 24.08
## 
## Data:
##  time variable observed predicted residual
##     0   parent     88.3    92.471  -4.1710
##     0   parent     91.4    92.471  -1.0710
##     1   parent     85.6    84.039   1.5610
##     1   parent     84.5    84.039   0.4610
##     2   parent     78.9    76.376   2.5241
##     2   parent     77.6    76.376   1.2241
##     3   parent     72.0    69.412   2.5884
##     3   parent     71.9    69.412   2.4884
##     5   parent     50.3    57.330  -7.0301
##     5   parent     59.4    57.330   2.0699
##     7   parent     47.0    47.352  -0.3515
##     7   parent     45.1    47.352  -2.2515
##    14   parent     27.7    24.247   3.4528
##    14   parent     27.3    24.247   3.0528
##    21   parent     10.0    12.416  -2.4163
##    21   parent     10.4    12.416  -2.0163
##    30   parent      2.9     5.251  -2.3513
##    30   parent      4.0     5.251  -1.2513
</code></pre>

<p>A plot of the fit is obtained with the plot function for mkinfit objects.</p>

<pre><code class="r">plot(m.L1.SFO)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-4"/> 
The residual plot can be easily obtained by</p>

<pre><code class="r">mkinresplot(m.L1.SFO, ylab = &quot;Observed&quot;, xlab = &quot;Time&quot;)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-5"/> </p>

<p>For comparison, the FOMC model is fitted as well, and the chi<sup>2</sup> error level
is checked.</p>

<pre><code class="r">m.L1.FOMC &lt;- mkinfit(&quot;FOMC&quot;, FOCUS_2006_L1_mkin, quiet=TRUE)
</code></pre>

<pre><code>## Warning in mkinfit(&quot;FOMC&quot;, FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation by method Port did not converge.
## Convergence code is 1
</code></pre>

<pre><code class="r">summary(m.L1.FOMC, data = FALSE)
</code></pre>

<pre><code>## mkin version:    0.9.36 
## R version:       3.2.1 
## Date of fit:     Sun Jun 21 15:31:55 2015 
## Date of summary: Sun Jun 21 15:31:55 2015 
## 
## 
## Warning: Optimisation by method Port did not converge.
## Convergence code is 1 
## 
## 
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
## 
## Model predictions using solution type analytical 
## 
## Fitted with method Port using 188 model solutions performed in 0.406 s
## 
## Weighting: none
## 
## Starting values for parameters to be optimised:
##          value   type
## parent_0 89.85  state
## alpha     1.00 deparm
## beta     10.00 deparm
## 
## Starting values for the transformed parameters actually optimised:
##               value lower upper
## parent_0  89.850000  -Inf   Inf
## log_alpha  0.000000  -Inf   Inf
## log_beta   2.302585  -Inf   Inf
## 
## Fixed parameter values:
## None
## 
## Optimised, transformed parameters with symmetric confidence intervals:
##           Estimate Std. Error  Lower Upper
## parent_0     92.47      1.422  89.44 95.50
## log_alpha    15.43     15.080 -16.71 47.58
## log_beta     17.78     15.090 -14.37 49.93
## 
## Parameter correlation:
##           parent_0 log_alpha log_beta
## parent_0    1.0000    0.1129   0.1112
## log_alpha   0.1129    1.0000   1.0000
## log_beta    0.1112    1.0000   1.0000
## 
## Residual standard error: 3.045 on 15 degrees of freedom
## 
## Backtransformed parameters:
##   Confidence intervals for internally transformed parameters are asymmetric.
##   t-test (unrealistically) based on the assumption of normal distribution
##   for estimators of untransformed parameters.
##           Estimate t value    Pr(&gt;t)     Lower     Upper
## parent_0 9.247e+01  65.150 4.044e-20 8.944e+01 9.550e+01
## alpha    5.044e+06   1.271 1.115e-01 5.510e-08 4.618e+20
## beta     5.276e+07   1.259 1.137e-01 5.732e-07 4.857e+21
## 
## Chi2 error levels in percent:
##          err.min n.optim df
## All data   3.619       3  6
## parent     3.619       3  6
## 
## Estimated disappearance times:
##        DT50  DT90 DT50back
## parent 7.25 24.08     7.25
</code></pre>

<p>Due to the higher number of parameters, and the lower number of degrees of
freedom of the fit, the chi<sup>2</sup> error level is actually higher for the FOMC
model (3.6%) than for the SFO model (3.4%). Additionally, the parameters
<code>log_alpha</code> and <code>log_beta</code> internally fitted in the model have p-values for the two
sided t-test of 0.18 and 0.125, and their correlation is 1.000, indicating that
the model is overparameterised. </p>

<p>The chi<sup>2</sup> error levels reported in Appendix 3 and Appendix 7 to the FOCUS
kinetics report are rounded to integer percentages and partly deviate by one
percentage point from the results calculated by mkin. The reason for
this is not known. However, mkin gives the same chi<sup>2</sup> error levels
as the kinfit package.  Furthermore, the calculation routines of the kinfit
package have been extensively compared to the results obtained by the KinGUI
software, as documented in the kinfit package vignette. KinGUI is a widely used
standard package in this field. </p>

<h2>Laboratory Data L2</h2>

<p>The following code defines example dataset L2 from the FOCUS kinetics
report, p. 287:</p>

<pre><code class="r">FOCUS_2006_L2 = data.frame(
  t = rep(c(0, 1, 3, 7, 14, 28), each = 2),
  parent = c(96.1, 91.8, 41.4, 38.7,
             19.3, 22.3, 4.6, 4.6,
             2.6, 1.2, 0.3, 0.6))
FOCUS_2006_L2_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L2)
</code></pre>

<p>Again, the SFO model is fitted and a summary is obtained:</p>

<pre><code class="r">m.L2.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L2_mkin, quiet=TRUE)
summary(m.L2.SFO)
</code></pre>

<pre><code>## mkin version:    0.9.36 
## R version:       3.2.1 
## Date of fit:     Sun Jun 21 15:31:55 2015 
## Date of summary: Sun Jun 21 15:31:55 2015 
## 
## Equations:
## d_parent = - k_parent_sink * parent
## 
## Model predictions using solution type analytical 
## 
## Fitted with method Port using 41 model solutions performed in 0.09 s
## 
## Weighting: none
## 
## Starting values for parameters to be optimised:
##               value   type
## parent_0      93.95  state
## k_parent_sink  0.10 deparm
## 
## Starting values for the transformed parameters actually optimised:
##                       value lower upper
## parent_0          93.950000  -Inf   Inf
## log_k_parent_sink -2.302585  -Inf   Inf
## 
## Fixed parameter values:
## None
## 
## Optimised, transformed parameters with symmetric confidence intervals:
##                   Estimate Std. Error   Lower   Upper
## parent_0           91.4700     3.8070 82.9800 99.9500
## log_k_parent_sink  -0.4112     0.1074 -0.6505 -0.1719
## 
## Parameter correlation:
##                   parent_0 log_k_parent_sink
## parent_0            1.0000            0.4295
## log_k_parent_sink   0.4295            1.0000
## 
## Residual standard error: 5.51 on 10 degrees of freedom
## 
## Backtransformed parameters:
##   Confidence intervals for internally transformed parameters are asymmetric.
##   t-test (unrealistically) based on the assumption of normal distribution
##   for estimators of untransformed parameters.
##               Estimate t value    Pr(&gt;t)   Lower   Upper
## parent_0       91.4700   24.03 1.773e-10 82.9800 99.9500
## k_parent_sink   0.6629    9.31 1.525e-06  0.5218  0.8421
## 
## Chi2 error levels in percent:
##          err.min n.optim df
## All data   14.38       2  4
## parent     14.38       2  4
## 
## Resulting formation fractions:
##             ff
## parent_sink  1
## 
## Estimated disappearance times:
##         DT50  DT90
## parent 1.046 3.474
## 
## Data:
##  time variable observed predicted residual
##     0   parent     96.1 9.147e+01   4.6343
##     0   parent     91.8 9.147e+01   0.3343
##     1   parent     41.4 4.714e+01  -5.7394
##     1   parent     38.7 4.714e+01  -8.4394
##     3   parent     19.3 1.252e+01   6.7790
##     3   parent     22.3 1.252e+01   9.7790
##     7   parent      4.6 8.834e-01   3.7166
##     7   parent      4.6 8.834e-01   3.7166
##    14   parent      2.6 8.532e-03   2.5915
##    14   parent      1.2 8.532e-03   1.1915
##    28   parent      0.3 7.958e-07   0.3000
##    28   parent      0.6 7.958e-07   0.6000
</code></pre>

<p>The chi<sup>2</sup> error level of 14% suggests that the model does not fit very well.
This is also obvious from the plots of the fit and the residuals.</p>

<pre><code class="r">par(mfrow = c(2, 1))
plot(m.L2.SFO)
mkinresplot(m.L2.SFO)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-9"/> </p>

<p>In the FOCUS kinetics report, it is stated that there is no apparent systematic
error observed from the residual plot up to the measured DT90 (approximately at
day 5), and there is an underestimation beyond that point.</p>

<p>We may add that it is difficult to judge the random nature of the residuals just 
from the three samplings at days 0, 1 and 3. Also, it is not clear <em>a
priori</em> why a consistent underestimation after the approximate DT90 should be
irrelevant. However, this can be rationalised by the fact that the FOCUS fate
models generally only implement SFO kinetics.</p>

<p>For comparison, the FOMC model is fitted as well, and the chi<sup>2</sup> error level
is checked.</p>

<pre><code class="r">m.L2.FOMC &lt;- mkinfit(&quot;FOMC&quot;, FOCUS_2006_L2_mkin, quiet = TRUE)
par(mfrow = c(2, 1))
plot(m.L2.FOMC)
mkinresplot(m.L2.FOMC)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-10"/> </p>

<pre><code class="r">summary(m.L2.FOMC, data = FALSE)
</code></pre>

<pre><code>## mkin version:    0.9.36 
## R version:       3.2.1 
## Date of fit:     Sun Jun 21 15:31:56 2015 
## Date of summary: Sun Jun 21 15:31:56 2015 
## 
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
## 
## Model predictions using solution type analytical 
## 
## Fitted with method Port using 81 model solutions performed in 0.173 s
## 
## Weighting: none
## 
## Starting values for parameters to be optimised:
##          value   type
## parent_0 93.95  state
## alpha     1.00 deparm
## beta     10.00 deparm
## 
## Starting values for the transformed parameters actually optimised:
##               value lower upper
## parent_0  93.950000  -Inf   Inf
## log_alpha  0.000000  -Inf   Inf
## log_beta   2.302585  -Inf   Inf
## 
## Fixed parameter values:
## None
## 
## Optimised, transformed parameters with symmetric confidence intervals:
##           Estimate Std. Error   Lower   Upper
## parent_0   93.7700     1.8560 89.5700 97.9700
## log_alpha   0.3180     0.1867 -0.1044  0.7405
## log_beta    0.2102     0.2943 -0.4555  0.8759
## 
## Parameter correlation:
##           parent_0 log_alpha log_beta
## parent_0   1.00000  -0.09553  -0.1863
## log_alpha -0.09553   1.00000   0.9757
## log_beta  -0.18628   0.97567   1.0000
## 
## Residual standard error: 2.628 on 9 degrees of freedom
## 
## Backtransformed parameters:
##   Confidence intervals for internally transformed parameters are asymmetric.
##   t-test (unrealistically) based on the assumption of normal distribution
##   for estimators of untransformed parameters.
##          Estimate t value    Pr(&gt;t)   Lower  Upper
## parent_0   93.770  50.510 1.173e-12 89.5700 97.970
## alpha       1.374   5.355 2.296e-04  0.9009  2.097
## beta        1.234   3.398 3.949e-03  0.6341  2.401
## 
## Chi2 error levels in percent:
##          err.min n.optim df
## All data   6.205       3  3
## parent     6.205       3  3
## 
## Estimated disappearance times:
##          DT50  DT90 DT50back
## parent 0.8092 5.356    1.612
</code></pre>

<p>The error level at which the chi<sup>2</sup> test passes is much lower in this case.
Therefore, the FOMC model provides a better description of the data, as less
experimental error has to be assumed in order to explain the data.</p>

<p>Fitting the four parameter DFOP model further reduces the chi<sup>2</sup> error level. </p>

<pre><code class="r">m.L2.DFOP &lt;- mkinfit(&quot;DFOP&quot;, FOCUS_2006_L2_mkin, quiet = TRUE)
plot(m.L2.DFOP)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-11"/> </p>

<p>Here, the default starting parameters for the DFOP model obviously do not lead
to a reasonable solution. Therefore the fit is repeated with different starting
parameters.</p>

<pre><code class="r">m.L2.DFOP &lt;- mkinfit(&quot;DFOP&quot;, FOCUS_2006_L2_mkin, 
  parms.ini = c(k1 = 1, k2 = 0.01, g = 0.8),
  quiet=TRUE)
plot(m.L2.DFOP)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-12"/> </p>

<pre><code class="r">summary(m.L2.DFOP, data = FALSE)
</code></pre>

<pre><code>## mkin version:    0.9.36 
## R version:       3.2.1 
## Date of fit:     Sun Jun 21 15:31:58 2015 
## Date of summary: Sun Jun 21 15:31:58 2015 
## 
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
##            time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 *
##            time))) * parent
## 
## Model predictions using solution type analytical 
## 
## Fitted with method Port using 336 model solutions performed in 0.746 s
## 
## Weighting: none
## 
## Starting values for parameters to be optimised:
##          value   type
## parent_0 93.95  state
## k1        1.00 deparm
## k2        0.01 deparm
## g         0.80 deparm
## 
## Starting values for the transformed parameters actually optimised:
##               value lower upper
## parent_0 93.9500000  -Inf   Inf
## log_k1    0.0000000  -Inf   Inf
## log_k2   -4.6051702  -Inf   Inf
## g_ilr     0.9802581  -Inf   Inf
## 
## Fixed parameter values:
## None
## 
## Optimised, transformed parameters with symmetric confidence intervals:
##          Estimate Std. Error Lower Upper
## parent_0  93.9500         NA    NA    NA
## log_k1     3.1210         NA    NA    NA
## log_k2    -1.0880         NA    NA    NA
## g_ilr     -0.2821         NA    NA    NA
## 
## Parameter correlation:
## Could not estimate covariance matrix; singular system:
## 
## Residual standard error: 1.732 on 8 degrees of freedom
## 
## Backtransformed parameters:
##   Confidence intervals for internally transformed parameters are asymmetric.
##   t-test (unrealistically) based on the assumption of normal distribution
##   for estimators of untransformed parameters.
##          Estimate t value Pr(&gt;t) Lower Upper
## parent_0  93.9500      NA     NA    NA    NA
## k1        22.6700      NA     NA    NA    NA
## k2         0.3369      NA     NA    NA    NA
## g          0.4016      NA     NA    NA    NA
## 
## Chi2 error levels in percent:
##          err.min n.optim df
## All data    2.53       4  2
## parent      2.53       4  2
## 
## Estimated disappearance times:
##        DT50 DT90 DT50_k1 DT50_k2
## parent   NA   NA 0.03058   2.058
</code></pre>

<p>Here, the DFOP model is clearly the best-fit model for dataset L2 based on the 
chi<sup>2</sup> error level criterion. However, the failure to calculate the covariance
matrix indicates that the parameter estimates correlate excessively. Therefore,
the FOMC model may be preferred for this dataset.</p>

<h2>Laboratory Data L3</h2>

<p>The following code defines example dataset L3 from the FOCUS kinetics report,
p. 290.</p>

<pre><code class="r">FOCUS_2006_L3 = data.frame(
  t = c(0, 3, 7, 14, 30, 60, 91, 120),
  parent = c(97.8, 60, 51, 43, 35, 22, 15, 12))
FOCUS_2006_L3_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L3)
</code></pre>

<p>SFO model, summary and plot:</p>

<pre><code class="r">m.L3.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L3_mkin, quiet = TRUE)
plot(m.L3.SFO)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-14"/> </p>

<pre><code class="r">summary(m.L3.SFO)
</code></pre>

<pre><code>## mkin version:    0.9.36 
## R version:       3.2.1 
## Date of fit:     Sun Jun 21 15:31:58 2015 
## Date of summary: Sun Jun 21 15:31:58 2015 
## 
## Equations:
## d_parent = - k_parent_sink * parent
## 
## Model predictions using solution type analytical 
## 
## Fitted with method Port using 43 model solutions performed in 0.089 s
## 
## Weighting: none
## 
## Starting values for parameters to be optimised:
##               value   type
## parent_0       97.8  state
## k_parent_sink   0.1 deparm
## 
## Starting values for the transformed parameters actually optimised:
##                       value lower upper
## parent_0          97.800000  -Inf   Inf
## log_k_parent_sink -2.302585  -Inf   Inf
## 
## Fixed parameter values:
## None
## 
## Optimised, transformed parameters with symmetric confidence intervals:
##                   Estimate Std. Error  Lower Upper
## parent_0            74.870     8.4570 54.180 95.57
## log_k_parent_sink   -3.678     0.3261 -4.476 -2.88
## 
## Parameter correlation:
##                   parent_0 log_k_parent_sink
## parent_0            1.0000            0.5483
## log_k_parent_sink   0.5483            1.0000
## 
## Residual standard error: 12.91 on 6 degrees of freedom
## 
## Backtransformed parameters:
##   Confidence intervals for internally transformed parameters are asymmetric.
##   t-test (unrealistically) based on the assumption of normal distribution
##   for estimators of untransformed parameters.
##               Estimate t value    Pr(&gt;t)    Lower    Upper
## parent_0      74.87000   8.853 5.776e-05 54.18000 95.57000
## k_parent_sink  0.02527   3.067 1.102e-02  0.01138  0.05612
## 
## Chi2 error levels in percent:
##          err.min n.optim df
## All data   21.24       2  6
## parent     21.24       2  6
## 
## Resulting formation fractions:
##             ff
## parent_sink  1
## 
## Estimated disappearance times:
##         DT50  DT90
## parent 27.43 91.13
## 
## Data:
##  time variable observed predicted residual
##     0   parent     97.8    74.872  22.9281
##     3   parent     60.0    69.406  -9.4061
##     7   parent     51.0    62.734 -11.7340
##    14   parent     43.0    52.564  -9.5638
##    30   parent     35.0    35.084  -0.0839
##    60   parent     22.0    16.440   5.5602
##    91   parent     15.0     7.511   7.4887
##   120   parent     12.0     3.610   8.3903
</code></pre>

<p>The chi<sup>2</sup> error level of 21% as well as the plot suggest that the model
does not fit very well. </p>

<p>The FOMC model performs better:</p>

<pre><code class="r">m.L3.FOMC &lt;- mkinfit(&quot;FOMC&quot;, FOCUS_2006_L3_mkin, quiet = TRUE)
plot(m.L3.FOMC)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-15"/> </p>

<pre><code class="r">summary(m.L3.FOMC, data = FALSE)
</code></pre>

<pre><code>## mkin version:    0.9.36 
## R version:       3.2.1 
## Date of fit:     Sun Jun 21 15:31:58 2015 
## Date of summary: Sun Jun 21 15:31:58 2015 
## 
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
## 
## Model predictions using solution type analytical 
## 
## Fitted with method Port using 83 model solutions performed in 0.181 s
## 
## Weighting: none
## 
## Starting values for parameters to be optimised:
##          value   type
## parent_0  97.8  state
## alpha      1.0 deparm
## beta      10.0 deparm
## 
## Starting values for the transformed parameters actually optimised:
##               value lower upper
## parent_0  97.800000  -Inf   Inf
## log_alpha  0.000000  -Inf   Inf
## log_beta   2.302585  -Inf   Inf
## 
## Fixed parameter values:
## None
## 
## Optimised, transformed parameters with symmetric confidence intervals:
##           Estimate Std. Error   Lower    Upper
## parent_0   96.9700     4.5500 85.2800 108.7000
## log_alpha  -0.8619     0.1704 -1.3000  -0.4238
## log_beta    0.6193     0.4744 -0.6003   1.8390
## 
## Parameter correlation:
##           parent_0 log_alpha log_beta
## parent_0    1.0000   -0.1512  -0.4271
## log_alpha  -0.1512    1.0000   0.9110
## log_beta   -0.4271    0.9110   1.0000
## 
## Residual standard error: 4.572 on 5 degrees of freedom
## 
## Backtransformed parameters:
##   Confidence intervals for internally transformed parameters are asymmetric.
##   t-test (unrealistically) based on the assumption of normal distribution
##   for estimators of untransformed parameters.
##          Estimate t value    Pr(&gt;t)   Lower    Upper
## parent_0  96.9700  21.310 2.108e-06 85.2800 108.7000
## alpha      0.4224   5.867 1.020e-03  0.2725   0.6546
## beta       1.8580   2.108 4.444e-02  0.5487   6.2890
## 
## Chi2 error levels in percent:
##          err.min n.optim df
## All data    7.32       3  5
## parent      7.32       3  5
## 
## Estimated disappearance times:
##         DT50  DT90 DT50back
## parent 7.729 431.2    129.8
</code></pre>

<p>The error level at which the chi<sup>2</sup> test passes is 7% in this case.</p>

<p>Fitting the four parameter DFOP model further reduces the chi<sup>2</sup> error level
considerably:</p>

<pre><code class="r">m.L3.DFOP &lt;- mkinfit(&quot;DFOP&quot;, FOCUS_2006_L3_mkin, quiet = TRUE)
plot(m.L3.DFOP)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-16"/> </p>

<pre><code class="r">summary(m.L3.DFOP, data = FALSE)
</code></pre>

<pre><code>## mkin version:    0.9.36 
## R version:       3.2.1 
## Date of fit:     Sun Jun 21 15:31:59 2015 
## Date of summary: Sun Jun 21 15:31:59 2015 
## 
## Equations:
## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
##            time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 *
##            time))) * parent
## 
## Model predictions using solution type analytical 
## 
## Fitted with method Port using 137 model solutions performed in 0.309 s
## 
## Weighting: none
## 
## Starting values for parameters to be optimised:
##          value   type
## parent_0 97.80  state
## k1        0.10 deparm
## k2        0.01 deparm
## g         0.50 deparm
## 
## Starting values for the transformed parameters actually optimised:
##              value lower upper
## parent_0 97.800000  -Inf   Inf
## log_k1   -2.302585  -Inf   Inf
## log_k2   -4.605170  -Inf   Inf
## g_ilr     0.000000  -Inf   Inf
## 
## Fixed parameter values:
## None
## 
## Optimised, transformed parameters with symmetric confidence intervals:
##          Estimate Std. Error   Lower     Upper
## parent_0  97.7500    1.43800 93.7500 101.70000
## log_k1    -0.6612    0.13340 -1.0310  -0.29100
## log_k2    -4.2860    0.05902 -4.4500  -4.12200
## g_ilr     -0.1229    0.05121 -0.2651   0.01925
## 
## Parameter correlation:
##          parent_0  log_k1   log_k2   g_ilr
## parent_0  1.00000  0.1640  0.01315  0.4253
## log_k1    0.16400  1.0000  0.46478 -0.5526
## log_k2    0.01315  0.4648  1.00000 -0.6631
## g_ilr     0.42526 -0.5526 -0.66310  1.0000
## 
## Residual standard error: 1.439 on 4 degrees of freedom
## 
## Backtransformed parameters:
##   Confidence intervals for internally transformed parameters are asymmetric.
##   t-test (unrealistically) based on the assumption of normal distribution
##   for estimators of untransformed parameters.
##          Estimate t value    Pr(&gt;t)    Lower     Upper
## parent_0 97.75000  67.970 1.404e-07 93.75000 101.70000
## k1        0.51620   7.499 8.460e-04  0.35650   0.74750
## k2        0.01376  16.940 3.557e-05  0.01168   0.01621
## g         0.45660  25.410 7.121e-06  0.40730   0.50680
## 
## Chi2 error levels in percent:
##          err.min n.optim df
## All data   2.225       4  4
## parent     2.225       4  4
## 
## Estimated disappearance times:
##         DT50 DT90 DT50_k1 DT50_k2
## parent 7.464  123   1.343   50.37
</code></pre>

<p>Here, a look to the model plot, the confidence intervals of the parameters 
and the correlation matrix suggest that the parameter estimates are reliable, and
the DFOP model can be used as the best-fit model based on the chi<sup>2</sup> error
level criterion for laboratory data L3.</p>

<p>This is also an example where the standard t-test for the parameter <code>g_ilr</code> is
misleading, as it tests for a significant difference from zero. In this case, 
zero appears to be the correct value for this parameter, and the confidence 
interval for the backtransformed parameter <code>g</code> is quite narrow.</p>

<h2>Laboratory Data L4</h2>

<p>The following code defines example dataset L4 from the FOCUS kinetics
report, p. 293:</p>

<pre><code class="r">FOCUS_2006_L4 = data.frame(
  t = c(0, 3, 7, 14, 30, 60, 91, 120),
  parent = c(96.6, 96.3, 94.3, 88.8, 74.9, 59.9, 53.5, 49.0))
FOCUS_2006_L4_mkin &lt;- mkin_wide_to_long(FOCUS_2006_L4)
</code></pre>

<p>SFO model, summary and plot:</p>

<pre><code class="r">m.L4.SFO &lt;- mkinfit(&quot;SFO&quot;, FOCUS_2006_L4_mkin, quiet = TRUE)
plot(m.L4.SFO)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-18"/> </p>

<pre><code class="r">summary(m.L4.SFO, data = FALSE)
</code></pre>

<pre><code>## mkin version:    0.9.36 
## R version:       3.2.1 
## Date of fit:     Sun Jun 21 15:31:59 2015 
## Date of summary: Sun Jun 21 15:31:59 2015 
## 
## Equations:
## d_parent = - k_parent_sink * parent
## 
## Model predictions using solution type analytical 
## 
## Fitted with method Port using 46 model solutions performed in 0.1 s
## 
## Weighting: none
## 
## Starting values for parameters to be optimised:
##               value   type
## parent_0       96.6  state
## k_parent_sink   0.1 deparm
## 
## Starting values for the transformed parameters actually optimised:
##                       value lower upper
## parent_0          96.600000  -Inf   Inf
## log_k_parent_sink -2.302585  -Inf   Inf
## 
## Fixed parameter values:
## None
## 
## Optimised, transformed parameters with symmetric confidence intervals:
##                   Estimate Std. Error  Lower   Upper
## parent_0             96.44    1.94900 91.670 101.200
## log_k_parent_sink    -5.03    0.07999 -5.225  -4.834
## 
## Parameter correlation:
##                   parent_0 log_k_parent_sink
## parent_0            1.0000            0.5865
## log_k_parent_sink   0.5865            1.0000
## 
## Residual standard error: 3.651 on 6 degrees of freedom
## 
## Backtransformed parameters:
##   Confidence intervals for internally transformed parameters are asymmetric.
##   t-test (unrealistically) based on the assumption of normal distribution
##   for estimators of untransformed parameters.
##                Estimate t value    Pr(&gt;t)     Lower     Upper
## parent_0      96.440000   49.49 2.283e-09 91.670000 1.012e+02
## k_parent_sink  0.006541   12.50 8.008e-06  0.005378 7.955e-03
## 
## Chi2 error levels in percent:
##          err.min n.optim df
## All data   3.287       2  6
## parent     3.287       2  6
## 
## Resulting formation fractions:
##             ff
## parent_sink  1
## 
## Estimated disappearance times:
##        DT50 DT90
## parent  106  352
</code></pre>

<p>The chi<sup>2</sup> error level of 3.3% as well as the plot suggest that the model
fits very well. </p>

<p>The FOMC model for comparison:</p>

<pre><code class="r">m.L4.FOMC &lt;- mkinfit(&quot;FOMC&quot;, FOCUS_2006_L4_mkin, quiet = TRUE)
plot(m.L4.FOMC)
</code></pre>

<p><img src="" alt="plot of chunk unnamed-chunk-19"/> </p>

<pre><code class="r">summary(m.L4.FOMC, data = FALSE)
</code></pre>

<pre><code>## mkin version:    0.9.36 
## R version:       3.2.1 
## Date of fit:     Sun Jun 21 15:31:59 2015 
## Date of summary: Sun Jun 21 15:31:59 2015 
## 
## Equations:
## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent
## 
## Model predictions using solution type analytical 
## 
## Fitted with method Port using 66 model solutions performed in 0.139 s
## 
## Weighting: none
## 
## Starting values for parameters to be optimised:
##          value   type
## parent_0  96.6  state
## alpha      1.0 deparm
## beta      10.0 deparm
## 
## Starting values for the transformed parameters actually optimised:
##               value lower upper
## parent_0  96.600000  -Inf   Inf
## log_alpha  0.000000  -Inf   Inf
## log_beta   2.302585  -Inf   Inf
## 
## Fixed parameter values:
## None
## 
## Optimised, transformed parameters with symmetric confidence intervals:
##           Estimate Std. Error  Lower    Upper
## parent_0   99.1400     1.6800 94.820 103.5000
## log_alpha  -0.3506     0.3725 -1.308   0.6068
## log_beta    4.1740     0.5635  2.726   5.6230
## 
## Parameter correlation:
##           parent_0 log_alpha log_beta
## parent_0    1.0000   -0.5365  -0.6083
## log_alpha  -0.5365    1.0000   0.9913
## log_beta   -0.6083    0.9913   1.0000
## 
## Residual standard error: 2.315 on 5 degrees of freedom
## 
## Backtransformed parameters:
##   Confidence intervals for internally transformed parameters are asymmetric.
##   t-test (unrealistically) based on the assumption of normal distribution
##   for estimators of untransformed parameters.
##          Estimate t value    Pr(&gt;t)   Lower   Upper
## parent_0  99.1400  59.020 1.322e-08 94.8200 103.500
## alpha      0.7042   2.685 2.178e-02  0.2703   1.835
## beta      64.9800   1.775 6.807e-02 15.2600 276.600
## 
## Chi2 error levels in percent:
##          err.min n.optim df
## All data   2.029       3  5
## parent     2.029       3  5
## 
## Estimated disappearance times:
##         DT50 DT90 DT50back
## parent 108.9 1644    494.9
</code></pre>

<p>The error level at which the chi<sup>2</sup> test passes is slightly lower for the FOMC 
model. However, the difference appears negligible.</p>

</body>

</html>

Contact - Imprint