1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
---
title: "Performance benefit by using compiled model definitions in mkin"
author: "Johannes Ranke"
date: "`r Sys.Date()`"
output:
html_document:
css: mkin_vignettes.css
toc: true
mathjax: null
theme: united
vignette: >
%\VignetteIndexEntry{Performance benefit by using compiled model definitions in mkin}
%\VignetteEngine{knitr::rmarkdown}
\usepackage[utf8]{inputenc}
---
```{r, include = FALSE}
library(knitr)
opts_chunk$set(tidy = FALSE, cache = FALSE)
```
## Benchmark for a model that can also be solved with Eigenvalues
This evaluation is taken from the example section of mkinfit. When using an mkin version
equal to or greater than 0.9-36 and a C compiler (gcc) is available, you will see
a message that the model is being compiled from autogenerated C code when
defining a model using mkinmod. The `mkinmod()` function checks for presence of
the gcc compiler using
```{r check_gcc}
Sys.which("gcc")
```
First, we build a simple degradation model for a parent compound with one metabolite.
```{r create_SFO_SFO}
library("mkin")
SFO_SFO <- mkinmod(
parent = mkinsub("SFO", "m1"),
m1 = mkinsub("SFO"))
```
We can compare the performance of the Eigenvalue based solution against the
compiled version and the R implementation of the differential equations using
the microbenchmark package.
```{r benchmark_SFO_SFO}
library("microbenchmark")
library("ggplot2")
mb.1 <- microbenchmark(
"deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D,
solution_type = "deSolve",
use_compiled = FALSE, quiet = TRUE),
"Eigenvalue based" = mkinfit(SFO_SFO, FOCUS_2006_D,
solution_type = "eigen", quiet = TRUE),
"deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D,
solution_type = "deSolve", quiet = TRUE),
times = 3, control = list(warmup = 1))
smb.1 <- summary(mb.1)
print(mb.1)
autoplot(mb.1)
```
We see that using the compiled model is by a factor of
`r round(smb.1[1, "median"]/smb.1[3, "median"], 1)`
faster than using the R version with the default ode solver, and it is even
faster than the Eigenvalue based solution implemented in R which does not need
iterative solution of the ODEs:
```{r}
rownames(smb.1) <- smb.1$expr
smb.1["median"]/smb.1["deSolve, compiled", "median"]
```
## Benchmark for a model that can not be solved with Eigenvalues
This evaluation is also taken from the example section of mkinfit.
```{r benchmark_FOMC_SFO}
FOMC_SFO <- mkinmod(
parent = mkinsub("FOMC", "m1"),
m1 = mkinsub( "SFO"))
mb.2 <- microbenchmark(
"deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D,
use_compiled = FALSE, quiet = TRUE),
"deSolve, compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE),
times = 3, control = list(warmup = 1))
smb.2 <- summary(mb.2)
print(mb.2)
smb.2["median"]/smb.2["deSolve, compiled", "median"]
autoplot(mb.2)
```
Here we get a performance benefit of a factor of
`r round(smb.2[1, "median"]/smb.2[2, "median"], 1)`
using the version of the differential equation model compiled from C code using
the inline package!
This vignette was built with mkin `r packageVersion("mkin")` on
```{r sessionInfo, echo = FALSE}
cat(capture.output(sessionInfo())[1:3], sep = "\n")
if(!inherits(try(cpuinfo <- readLines("/proc/cpuinfo")), "try-error")) {
cat(gsub("model name\t: ", "CPU model: ", cpuinfo[grep("model name", cpuinfo)[1]]))
}
```
|