From a76221d87485029444c8e684022ca606a0c7e68d Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Wed, 18 Jan 2017 22:41:01 +0100 Subject: Update static docs using pkgdown - Add _pkgdown.yml for a structured function/data reference - Make seealso links active - Make mkinfit calls quiet - Use pkgdown branch from pull request hadley/pkgdown#229 to have topics ordered --- docs/reference/soil_scenario_data_EFSA_2015.html | 157 +++++++++++++++++++++++ 1 file changed, 157 insertions(+) create mode 100644 docs/reference/soil_scenario_data_EFSA_2015.html (limited to 'docs/reference/soil_scenario_data_EFSA_2015.html') diff --git a/docs/reference/soil_scenario_data_EFSA_2015.html b/docs/reference/soil_scenario_data_EFSA_2015.html new file mode 100644 index 0000000..f842d08 --- /dev/null +++ b/docs/reference/soil_scenario_data_EFSA_2015.html @@ -0,0 +1,157 @@ + + + + + + + + +Properties of the predefined scenarios from the EFSA guidance from 2015 — soil_scenario_data_EFSA_2015 • pfm + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + +
+ +
+
+ + + +

Properties of the predefined scenarios used at Tier 1, Tier 2A and Tier 3A for the +concentration in soil as given in the EFSA guidance (2015, p. 13/14). Also, the +scenario and model adjustment factors from p. 15 and p. 17 are included.

+ + + +

Format

+ +

A data frame with one row for each scenario. Row names are the scenario codes, + e.g. CTN for the Northern scenario for the total concentration in soil. Columns are + mostly self-explanatory. rho is the dry bulk density of the top soil.

+ +

Source

+ +

EFSA (European Food Safety Authority) (2015) +EFSA guidance document for predicting environmental concentrations +of active substances of plant protection products and transformation products of these +active substances in soil. EFSA Journal 13(4) 4093 +doi:10.2903/j.efsa.2015.4093

+ + +

Examples

+
## Not run: ------------------------------------ +# # This is the code that was used to define the data +# soil_scenario_data_EFSA_2015 <- data.frame( +# Zone = rep(c("North", "Central", "South"), 2), +# Country = c("Estonia", "Germany", "France", "Denmark", "Czech Republik", "Spain"), +# T_arit = c(4.7, 8.0, 11.0, 8.2, 9.1, 12.8), +# T_arr = c(7.0, 10.1, 12.3, 9.8, 11.2, 14.7), +# Texture = c("Coarse", "Coarse", "Medium fine", "Medium", "Medium", "Medium"), +# f_om = c(0.118, 0.086, 0.048, 0.023, 0.018, 0.011), +# theta_fc = c(0.244, 0.244, 0.385, 0.347, 0.347, 0.347), +# rho = c(0.95, 1.05, 1.22, 1.39, 1.43, 1.51), +# f_sce = c(3, 2, 2, 2, 1.5, 1.5), +# f_mod = c(2, 2, 2, 4, 4, 4), +# stringsAsFactors = FALSE, +# row.names = c("CTN", "CTC", "CTS", "CLN", "CLC", "CLS") +# ) +# save(soil_scenario_data_EFSA_2015, file = '../data/soil_scenario_data_EFSA_2015.RData') +## --------------------------------------------- + +# And this is the resulting dataframe +soil_scenario_data_EFSA_2015
#> Zone Country T_arit T_arr Texture f_om theta_fc rho f_sce +#> CTN North Estonia 4.7 7.0 Coarse 0.118 0.244 0.95 3.0 +#> CTC Central Germany 8.0 10.1 Coarse 0.086 0.244 1.05 2.0 +#> CTS South France 11.0 12.3 Medium fine 0.048 0.385 1.22 2.0 +#> CLN North Denmark 8.2 9.8 Medium 0.023 0.347 1.39 2.0 +#> CLC Central Czech Republik 9.1 11.2 Medium 0.018 0.347 1.43 1.5 +#> CLS South Spain 12.8 14.7 Medium 0.011 0.347 1.51 1.5 +#> f_mod +#> CTN 2 +#> CTC 2 +#> CTS 2 +#> CLN 4 +#> CLC 4 +#> CLS 4
+
+ +
+ + +
+ + + -- cgit v1.2.1