From a76221d87485029444c8e684022ca606a0c7e68d Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Wed, 18 Jan 2017 22:41:01 +0100 Subject: Update static docs using pkgdown - Add _pkgdown.yml for a structured function/data reference - Make seealso links active - Make mkinfit calls quiet - Use pkgdown branch from pull request hadley/pkgdown#229 to have topics ordered --- docs/soil_scenario_data_EFSA_2015.html | 144 --------------------------------- 1 file changed, 144 deletions(-) delete mode 100644 docs/soil_scenario_data_EFSA_2015.html (limited to 'docs/soil_scenario_data_EFSA_2015.html') diff --git a/docs/soil_scenario_data_EFSA_2015.html b/docs/soil_scenario_data_EFSA_2015.html deleted file mode 100644 index 405e5b0..0000000 --- a/docs/soil_scenario_data_EFSA_2015.html +++ /dev/null @@ -1,144 +0,0 @@ - - - - -soil_scenario_data_EFSA_2015. pfm 0.3-8 - - - - - - - - - - - - - - - - - - -
-
- -
- -

Properties of the predefined scenarios from the EFSA guidance from 2015

- -
-
- -
-

Format

- -

A data frame with one row for each scenario. Row names are the scenario codes, - e.g. CTN for the Northern scenario for the total concentration in soil. Columns are - mostly self-explanatory. rho is the dry bulk density of the top soil.

- -
- -
-

Source

- -

EFSA (European Food Safety Authority) (2015) -EFSA guidance document for predicting environmental concentrations -of active substances of plant protection products and transformation products of these -active substances in soil. EFSA Journal 13(4) 4093 -doi:10.2903/j.efsa.2015.4093

- -
- -
-

Description

- -

Properties of the predefined scenarios used at Tier 1, Tier 2A and Tier 3A for the -concentration in soil as given in the EFSA guidance (2015, p. 13/14). Also, the -scenario and model adjustment factors from p. 15 and p. 17 are included.

- -
- -

Examples

-
## Not run: ------------------------------------ -# # This is the code that was used to define the data -# soil_scenario_data_EFSA_2015 <- data.frame( -# Zone = rep(c("North", "Central", "South"), 2), -# Country = c("Estonia", "Germany", "France", "Denmark", "Czech Republik", "Spain"), -# T_arit = c(4.7, 8.0, 11.0, 8.2, 9.1, 12.8), -# T_arr = c(7.0, 10.1, 12.3, 9.8, 11.2, 14.7), -# Texture = c("Coarse", "Coarse", "Medium fine", "Medium", "Medium", "Medium"), -# f_om = c(0.118, 0.086, 0.048, 0.023, 0.018, 0.011), -# theta_fc = c(0.244, 0.244, 0.385, 0.347, 0.347, 0.347), -# rho = c(0.95, 1.05, 1.22, 1.39, 1.43, 1.51), -# f_sce = c(3, 2, 2, 2, 1.5, 1.5), -# f_mod = c(2, 2, 2, 4, 4, 4), -# stringsAsFactors = FALSE, -# row.names = c("CTN", "CTC", "CTS", "CLN", "CLC", "CLS") -# ) -# save(soil_scenario_data_EFSA_2015, file = '../data/soil_scenario_data_EFSA_2015.RData') -## --------------------------------------------- - -# And this is the resulting dataframe -soil_scenario_data_EFSA_2015
-
Zone Country T_arit T_arr Texture f_om theta_fc rho f_sce -CTN North Estonia 4.7 7.0 Coarse 0.118 0.244 0.95 3.0 -CTC Central Germany 8.0 10.1 Coarse 0.086 0.244 1.05 2.0 -CTS South France 11.0 12.3 Medium fine 0.048 0.385 1.22 2.0 -CLN North Denmark 8.2 9.8 Medium 0.023 0.347 1.39 2.0 -CLC Central Czech Republik 9.1 11.2 Medium 0.018 0.347 1.43 1.5 -CLS South Spain 12.8 14.7 Medium 0.011 0.347 1.51 1.5 - f_mod -CTN 2 -CTC 2 -CTS 2 -CLN 4 -CLC 4 -CLS 4 -
-
- -
- - -
- - \ No newline at end of file -- cgit v1.2.1