#' Runoff loss percentages as used in Exposit 3 #' #' A table of the loss percentages used in Exposit 3 for the twelve different Koc classes #' #' @name perc_runoff_exposit #' @format A data frame with percentage values for the dissolved fraction and the fraction #' bound to eroding particles, with Koc classes used as row names #' \describe{ #' \item{dissolved}{The percentage of the applied substance transferred to an #' adjacent water body in the dissolved phase} #' \item{bound}{The percentage of the applied substance transferred to an #' adjacent water body bound to eroding particles} #' } #' @source Excel 3.01 spreadsheet available from #' \url{https://www.bvl.bund.de/DE/04_Pflanzenschutzmittel/03_Antragsteller/04_Zulassungsverfahren/07_Naturhaushalt/psm_naturhaush_node.html#doc1400590bodyText3} #' @export #' @examples #' print(perc_runoff_exposit) Koc_breaks <- c(0, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, Inf) tmp <- paste(Koc_breaks[1:11], Koc_breaks[2:12], sep = "-") Koc_classes <- c(tmp[1], paste0(">", tmp[2:11]), ">50000") perc_runoff_exposit <- data.frame( Koc_lower_bound = Koc_breaks[1:12], dissolved = c(0.11, 0.151, 0.197, 0.248, 0.224, 0.184, 0.133, 0.084, 0.037, 0.031, 0.014, 0.001), bound = c(0, 0, 0, 0.001, 0.004, 0.020, 0.042, 0.091, 0.159, 0.192, 0.291, 0.451)) rownames(perc_runoff_exposit) <- Koc_classes #' Runoff reduction percentages as used in Exposit #' #' A table of the runoff reduction percentages used in Exposit 3 for different vegetated buffer widths #' #' @name perc_runoff_reduction_exposit #' @format A named list of data frames with reduction percentage values for the #' dissolved fraction and the fraction bound to eroding particles, with #' vegetated buffer widths as row names. The names of the list items are the Exposit versions #' from which the values were taken. #' \describe{ #' \item{dissolved}{The reduction percentage for the dissolved phase} #' \item{bound}{The reduction percentage for the particulate phase} #' } #' @source Excel 3.01 spreadsheet available from #' \url{https://www.bvl.bund.de/DE/04_Pflanzenschutzmittel/03_Antragsteller/04_Zulassungsverfahren/07_Naturhaushalt/psm_naturhaush_node.html#doc1400590bodyText3} #' @export #' @examples #' print(perc_runoff_reduction_exposit) buffers <- c("No buffer", paste(c(5, 10, 20), "m")) perc_runoff_reduction_exposit <- list( "3.01" = data.frame( dissolved = c(0, 40, 60, 80), bound = c(0, 40, 85, 95), row.names = buffers), "2.0" = data.frame( dissolved = c(0, 97.5), bound = c(0, 97.5), row.names = c("No buffer", "20 m")) ) #' Calculate PEC surface water due to runoff and erosion as in Exposit 3 #' #' This is a reimplementation of the calculation described in the Exposit 3.01 spreadsheet file, #' in the worksheet "Konzept Runoff". Calculation of sediment PEC values is not implemented. #' #' @param rate The application rate in g/ha #' @param Koc The sorption coefficient to soil organic carbon #' @param DT50 The soil half-life in days #' @param t_runoff The time between application and the runoff event, where degradation occurs, in days #' @param exposit_reduction_version The version of the reduction factors to be used #' @param V_ditch The volume of the ditch is assumed to be 1 m * 100 m * 30 cm = 30 m3 #' @param V_event The unreduced runoff volume, equivalent to 10 mm precipitation on 1 ha #' @return A list containing the following components #' \describe{ #' \item{Input}{A matrix containing dissolved and bound input for the different distances} #' \item{PEC_sw_runoff}{A matrix containing PEC values for dissolved and bound substance #' for the different distances. If the rate was given in g/ha, the PECsw are in microg/L.} #' } #' @export #' @source Excel 3.01 spreadsheet available from #' \url{https://www.bvl.bund.de/DE/04_Pflanzenschutzmittel/03_Antragsteller/04_Zulassungsverfahren/07_Naturhaushalt/psm_naturhaush_node.html#doc1400590bodyText3} #' @seealso \code{\link{perc_runoff_exposit}} for runoff loss percentages and \code{\link{perc_runoff_reduction_exposit}} for runoff reduction percentages used #' @examples #' PEC_sw_exposit_runoff(500, 150) PEC_sw_exposit_runoff <- function(rate, Koc, DT50 = Inf, t_runoff = 3, exposit_reduction_version = c("3.01", "2.0"), V_ditch = 30, V_event = 100) { k_deg <- log(2)/DT50 input <- rate * 1 * exp(-k_deg * t_runoff) # assumes 1 ha treated area if (length(Koc) > 1) stop("Only one compound at a time supported") exposit_reduction_version <- match.arg(exposit_reduction_version) red_water <- perc_runoff_reduction_exposit[[exposit_reduction_version]]["dissolved"] / 100 red_bound <- perc_runoff_reduction_exposit[[exposit_reduction_version]]["bound"] / 100 reduction_runoff <- perc_runoff_reduction_exposit[[exposit_reduction_version]] / 100 transfer_runoff <- 1 - reduction_runoff V_runoff <- V_event * (1 - reduction_runoff[["dissolved"]]) # m3 V_ditch_runoff <- V_ditch + V_runoff V_flowing_ditch_runoff <- 2 * V_ditch_runoff f_runoff_exposit <- function(Koc) { Koc_breaks <- c(perc_runoff_exposit$Koc_lower_bound, Inf) Koc_classes <- as.character(cut(Koc, Koc_breaks, labels = rownames(perc_runoff_exposit))) perc_runoff <- perc_runoff_exposit[Koc_classes, c("dissolved", "bound")] return(unlist(perc_runoff) / 100) } f_runoff <- f_runoff_exposit(Koc) runoff_dissolved <- input * f_runoff["dissolved"] * transfer_runoff["dissolved"] runoff_bound <- input * f_runoff["bound"] * transfer_runoff["bound"] runoff_input <- cbind(runoff_dissolved, runoff_bound) runoff_input$total <- runoff_input$dissolved + runoff_input$bound PEC_sw_runoff <- 1000 * runoff_input / V_flowing_ditch_runoff result <- list(Rate = rate, Koc = Koc, Input = runoff_input, PEC_sw_runoff = PEC_sw_runoff) return(result) }