#' Calculate FOCUS Step 1 PEC surface water #' #' This is reimplementation of Step 1 of the FOCUS Step 1 and 2 calculator #' version 3.2, authored by Michael Klein. Note that results for multiple #' applications should be compared to the corresponding results for a #' single application. At current, this is not done automatically in #' this implementation. #' #' @importFrom utils read.table #' @references FOCUS (2014) Generic guidance for Surface Water Scenarios (version 1.4). #' FOrum for the Co-ordination of pesticde fate models and their USe. #' http://esdac.jrc.ec.europa.eu/public_path/projects_data/focus/sw/docs/Generic%20FOCUS_SWS_vc1.4.pdf #' @references Website of the Steps 1 and 2 calculator at the Joint Research #' Center of the European Union: #' http://esdac.jrc.ec.europa.eu/projects/stepsonetwo #' @note The formulas for input to the waterbody via runoff/drainage of the #' parent and subsequent formation of the metabolite in water is not #' documented in the model description coming with the calculator. As one would #' expect, this appears to be (as we get the same results) calculated by #' multiplying the application rate with the molar weight #' correction and the formation fraction in water/sediment systems. #' @note Step 2 is not implemented. #' @export #' @param parent A list containing substance specific parameters, e.g. #' conveniently generated by \code{\link{chent_focus_sw}}. #' @param rate The application rate in g/ha. Overriden when #' applications are given explicitly #' @param n The number of applications #' @param i The application interval #' @param met A list containing metabolite specific parameters. e.g. #' conveniently generated by \code{\link{chent_focus_sw}}. If not NULL, #' the PEC is calculated for this compound, not the parent. #' @param f_drift The fraction of the application rate reaching the waterbody #' via drift. If NA, this is derived from the scenario name and the number #' of applications via the drift data defined by the #' \code{\link{FOCUS_Step_12_scenarios}} #' @param f_rd The fraction of the amount applied reaching the waterbody via #' runoff/drainage. At Step 1, it is assumed to be 10%, be it the #' parent or a metabolite #' @param scenario The name of the scenario. Must be one of the scenario #' names given in \code{\link{FOCUS_Step_12_scenarios}} #' @examples #' # Parent only #' dummy_1 <- chent_focus_sw(cwsat = 6000, DT50_ws = 6, Koc = 344.8) #' PEC_sw_focus(dummy_1, 3000, f_drift = 0) #' #' # Metabolite #' new_dummy <- chent_focus_sw(mw = 250, Koc = 100) #' M1 <- chent_focus_sw(mw = 100, cwsat = 100, DT50_ws = 100, Koc = 50, max_ws = 0, max_soil = 0.5) #' PEC_sw_focus(new_dummy, 1000, scenario = "cereals, winter", met = M1) PEC_sw_focus <- function(parent, rate, n = 1, i = NA, met = NULL, f_drift = NA, f_rd = 0.1, scenario = FOCUS_Step_12_scenarios$names) { if (n > 1 & is.na(i)) stop("Please specify the interval i if n > 1") if (is.na(f_drift)) { scenario = match.arg(scenario) f_drift = FOCUS_Step_12_scenarios$drift[scenario, "1"] / 100 # For Step 2 we would/will select the reduced percentiles for multiple apps: # if (n <= 8) { # f_drift = FOCUS_Step_12_scenarios$drift[scenario, as.character(n)] / 100 # } else { # f_drift = FOCUS_Step_12_scenarios$drift[scenario, ">8"] / 100 # } } if (is.null(met)) { cwsat = parent$cwsat mw_ratio = 1 max_soil = 1 max_ws = 1 Koc = parent$Koc DT50_ws = parent$DT50_ws } else { cwsat = met$cwsat mw_ratio = met$mw / parent$mw max_soil = met$max_soil max_ws = met$max_ws Koc = met$Koc DT50_ws = met$DT50_ws } # Rates for a single application eq_rate_drift_s = mw_ratio * max_ws * rate # Parent only, or metabolite formed in soil: eq_rate_rd_s = mw_ratio * max_soil * rate # Metabolite formed in water (this part is not documented in the Help files # of the Steps 1/2 calculator): if (!is.null(met)) { eq_rate_rd_parent_s = mw_ratio * max_ws * rate eq_rate_rd_s_tot = eq_rate_rd_s + eq_rate_rd_parent_s } else { eq_rate_rd_parent_s = NA eq_rate_rd_s_tot = eq_rate_rd_s } # Drift input input_drift_s = f_drift * eq_rate_drift_s / 10 # mg/m2 # Runoff/drainage input ratio_field_wb = 10 # 10 m2 of field for each m2 of the waterbody input_rd_s = f_rd * eq_rate_rd_s_tot * ratio_field_wb / 10 input_rd = n * input_rd_s # No accumulation between multiple applications if 3 * DT50 < i if (n > 1 && (3 * DT50_ws < i)) { input_drift = input_drift_s input_rd = input_rd_s } else { input_drift = n * input_drift_s input_rd = n * input_rd_s } # Fraction of compound entering the water phase via runoff/drainage depth_sw = 0.3 # m depth_sed = 0.05 # m depth_sed_eff = 0.01 # m, only relevant for sorption rho_sed = 0.8 # kg/L f_OC = 0.05 # 5% organic carbon in sediment f_rd_sw = depth_sw / (depth_sw + (depth_sed_eff * rho_sed * f_OC * Koc)) f_rd_sed = 1 - f_rd_sw # Initial PECs PEC_sw_0 = (input_drift + input_rd * f_rd_sw) / depth_sw # µg/L PEC_sed_0 = (input_rd * f_rd_sed) / (depth_sed * rho_sed) # µg/kg # Initial PECs when assuming partitioning also of drift input PEC_sw_0_part = (input_drift + input_rd) * f_rd_sw / depth_sw # µg/L PEC_sed_0_part = (input_drift + input_rd) * f_rd_sed / (depth_sed * rho_sed) # µg/kg t_out = c(0, 1, 2, 4, 7, 14, 21, 28, 42, 50, 100) PEC = matrix(NA, nrow = length(t_out), ncol = 4, dimnames = list(Time = t_out, type = c("PECsw", "TWAECsw", "PECsed", "TWAECsed"))) PEC["0", "PECsw"] = PEC_sw_0 PEC["0", "PECsed"] = PEC_sed_0 # Degradation after partitioning according to Koc k_ws = log(2)/DT50_ws PEC[as.character(t_out[-1]), "PECsw"] = PEC_sw_0_part * exp( - k_ws * t_out[-1]) PEC[as.character(t_out[-1]), "PECsed"] = PEC_sed_0_part * exp( - k_ws * t_out[-1]) # TWA concentrations PEC_sw_1 = PEC["1", "PECsw"] PEC_sed_1 = PEC["1", "PECsed"] TWAEC_sw_1 = (PEC_sw_0 + PEC_sw_1) / 2 TWAEC_sed_1 = (PEC_sed_0 + PEC_sed_1) / 2 TWAEC_after = function(TWAEC_1, PEC_1, t) { (TWAEC_1 + PEC_1 * (1 - exp(- k_ws * (t - 1))) / k_ws) / t } PEC["1", "TWAECsw"] = TWAEC_sw_1 PEC["1", "TWAECsed"] = TWAEC_sed_1 PEC[as.character(t_out[-1]), "TWAECsw"] = TWAEC_after(TWAEC_sw_1, PEC_sw_1, t_out[-1]) PEC[as.character(t_out[-1]), "TWAECsed"] = TWAEC_after(TWAEC_sed_1, PEC_sed_1, t_out[-1]) # Check if PEC_sw_max is above water solubility PEC_sw_max = max(PEC[, "PECsw"]) if (PEC_sw_max > 1000 * cwsat) { warning("The maximum PEC surface water exceeds the water solubility") } PEC_sed_max = max(PEC[, "PECsed"]) list(f_drift = f_drift, eq_rate_drift_s = eq_rate_drift_s, eq_rate_rd_s = eq_rate_rd_s, eq_rate_rd_parent_s = eq_rate_rd_parent_s, input_drift_s = input_drift_s, input_rd_s = input_rd_s, f_rd_sw = f_rd_sw, f_rd_sed = f_rd_sed, PEC = PEC, PEC_sw_max = PEC_sw_max, PEC_sed_max = PEC_sed_max ) } #' Create a chemical compound object for FOCUS Step 1 calculations #' #' @export #' @param cwsat Water solubility in mg/L #' @param DT50_ws Half-life in water/sediment systems in days #' @param Koc Partition coefficient between organic carbon and water #' in L/kg. #' @param mw Molar weight in g/mol #' @param max_soil Maximum observed fraction (dimensionless) in soil #' @param max_ws Maximum observed fraction (dimensionless) in water/sediment #' systems #' @return A list with the substance specific properties chent_focus_sw <- function(Koc, DT50_ws = NA, cwsat = 1000, mw = NA, max_soil = 1, max_ws = 1) { list(Koc = Koc, DT50_ws = DT50_ws, cwsat = cwsat, mw = mw, max_soil = max_soil, max_ws = max_ws) }