Calculate predicted environmental concentrations in surface water due to drift
Source:R/PEC_sw_drift.R
PEC_sw_drift.Rd
This is a basic, vectorised form of a simple calculation of a contaminant concentration in surface water based on complete, instantaneous mixing with input via spray drift.
Arguments
=======Arguments
>>>>>>> refs/remotes/origin/main- rate
Application rate in units specified below
- applications
Number of applications for selection of drift percentile
- water_depth
Depth of the water body in cm
- drift_percentages
Percentage drift values for which to calculate PECsw. 'drift_data' and 'distances' if not NULL.
- drift_data <<<<<<< HEAD
Source of drift percentage data. If 'JKI', the [drift_data_JKI] =======
Source of drift percentage data. If 'JKI', the drift_data_JKI >>>>>>> refs/remotes/origin/main included in the package is used. If 'RF', the Rautmann formula is used, if implemented for the crop type and number of applications
- crop
Crop name (use German names for JKI data), defaults to "Ackerbau"
- distances
The distances in m for which to get PEC values
- rate_units
Defaults to g/ha
- PEC_units
Requested units for the calculated PEC. Only µg/L currently supported
Value
======= <<<<<<< HEADExamples
=======Examples
>>>>>>> refs/remotes/origin/mainPEC_sw_drift(100)
#> 1 m 5 m 10 m 20 m
#> 0.92333333 0.19000000 0.09666667 0.05000000
# Alternatively, we can use the formula for a single application to "Ackerbau" from the paper
PEC_sw_drift(100, drift_data = "RF")
#> 1 m 5 m 10 m 20 m
#> 0.92350000 0.19114149 0.09699222 0.04921742
# This makes it possible to also use different substances
PEC_sw_drift(100, distances = c(1, 3, 5, 6, 10, 20, 50, 100), drift_data = "RF")
#> 1 m 3 m 5 m 6 m 10 m 20 m 50 m
#> 0.92350000 0.31512171 0.19114149 0.15990435 0.09699222 0.04921742 0.02007497
#> 100 m
#> 0.01018678
# Using custom drift percentages is also supported
PEC_sw_drift(100, drift_percentages = c(2.77, 0.95, 0.57, 0.48, 0.29, 0.15, 0.06, 0.03))
#> 2.77 % 0.95 % 0.57 % 0.48 % 0.29 % 0.15 % 0.06 %
#> 0.92333333 0.31666667 0.19000000 0.16000000 0.09666667 0.05000000 0.02000000
#> 0.03 %
#> 0.01000000