This is reimplementation of Step 1 of the FOCUS Step 1 and 2 calculator version 3.2, authored by Michael Klein. Note that results for multiple applications should be compared to the corresponding results for a single application. At current, this is not done automatically in this implementation.

PEC_sw_focus(parent, rate, n = 1, i = NA, met = NULL, f_drift = NA,
  f_rd = 0.1, scenario = FOCUS_Step_12_scenarios$names)

Arguments

parent

A list containing substance specific parameters

rate

The application rate in g/ha. Overriden when applications are given explicitly

n

The number of applications

i

The application interval

met

A list containing metabolite specific parameters. If not NULL, the PEC is calculated for this compound, not the parent.

f_drift

The fraction of the application rate reaching the waterbody via drift. If NA, this is derived from the scenario name and the number of applications via the drift data defined by the FOCUS_Step_12_scenarios

f_rd

The fraction of the amount applied reaching the waterbody via runoff/drainage. At Step 1, it is assumed to be 10 parent or a metabolite

scenario

The name of the scenario. Must be one of the scenario names given in FOCUS_Step_12_scenarios

Note

The formulas for input to the waterbody via runoff/drainage of the parent and subsequent formation of the metabolite in water is not documented in the model description coming with the calculator

Step 2 is not implemented

References

FOCUS (2014) Generic guidance for Surface Water Scenarios (version 1.4). FOrum for the Co-ordination of pesticde fate models and their USe. http://esdac.jrc.ec.europa.eu/public_path/projects_data/focus/sw/docs/Generic

Website of the Steps 1 and 2 calculator at the Joint Research Center of the European Union: http://esdac.jrc.ec.europa.eu/projects/stepsonetwo

Examples

# Parent only dummy_1 <- chent_focus_sw(cwsat = 6000, DT50_ws = 6, Koc = 344.8) PEC_sw_focus(dummy_1, 3000, f_drift = 0)
#> $f_drift #> [1] 0 #> #> $eq_rate_drift_s #> [1] 3000 #> #> $eq_rate_rd_s #> [1] 3000 #> #> $eq_rate_rd_parent_s #> [1] NA #> #> $input_drift_s #> [1] 0 #> #> $input_rd_s #> [1] 300 #> #> $f_rd_sw #> [1] 0.6850566 #> #> $f_rd_sed #> [1] 0.3149434 #> #> $PEC #> type #> Time PECsw TWAECsw PECsed TWAECsed #> 0 6.850566e+02 NA 2.362075e+03 NA #> 1 6.103161e+02 647.6864 2.104370e+03 2233.223 #> 2 5.437298e+02 NA 1.874780e+03 NA #> 4 4.315586e+02 NA 1.488014e+03 NA #> 7 3.051580e+02 NA 1.052185e+03 NA #> 14 1.359325e+02 NA 4.686951e+02 NA #> 21 6.055102e+01 NA 2.087799e+02 NA #> 28 2.697241e+01 NA 9.300089e+01 NA #> 42 5.352005e+00 NA 1.845371e+01 NA #> 50 2.123945e+00 NA 7.323361e+00 NA #> 100 6.585062e-03 NA 2.270529e-02 NA #> #> $PEC_sw_max #> [1] 685.0566 #> #> $PEC_sed_max #> [1] 2362.075 #>
# Metabolite new_dummy <- chent_focus_sw(mw = 250, Koc = 100) M1 <- chent_focus_sw(mw = 100, cwsat = 100, DT50_ws = 100, Koc = 50, max_ws = 0, max_soil = 0.5) PEC_sw_focus(new_dummy, 1000, scenario = "cereals, winter", met = M1)
#> $f_drift #> [1] 0.02759 #> #> $eq_rate_drift_s #> [1] 0 #> #> $eq_rate_rd_s #> [1] 200 #> #> $eq_rate_rd_parent_s #> [1] 0 #> #> $input_drift_s #> [1] 0 #> #> $input_rd_s #> [1] 20 #> #> $f_rd_sw #> [1] 0.9375 #> #> $f_rd_sed #> [1] 0.0625 #> #> $PEC #> type #> Time PECsw TWAECsw PECsed TWAECsed #> 0 62.50000 NA 31.25000 NA #> 1 62.06828 62.28414 31.03414 31.14207 #> 2 61.63954 NA 30.81977 NA #> 4 60.79093 NA 30.39547 NA #> 7 59.53987 NA 29.76994 NA #> 14 56.71995 NA 28.35997 NA #> 21 54.03358 NA 27.01679 NA #> 28 51.47444 NA 25.73722 NA #> 42 46.71404 NA 23.35702 NA #> 50 44.19417 NA 22.09709 NA #> 100 31.25000 NA 15.62500 NA #> #> $PEC_sw_max #> [1] 62.5 #> #> $PEC_sed_max #> [1] 31.25 #>