calplot <- function(object,
xlim = c("auto","auto"), ylim = c("auto","auto"),
xlab = "Concentration", ylab = "Response", alpha=0.05,
varfunc = NULL)
{
UseMethod("calplot")
}
calplot.default <- function(object,
xlim = c("auto","auto"), ylim = c("auto","auto"),
xlab = "Concentration", ylab = "Response",
alpha=0.05, varfunc = NULL)
{
stop("Calibration plots only implemented for univariate lm objects.")
}
calplot.lm <- function(object,
xlim = c("auto","auto"), ylim = c("auto","auto"),
xlab = "Concentration", ylab = "Response", alpha=0.05,
varfunc = NULL)
{
if (length(object$coef) > 2)
stop("More than one independent variable in your model - not implemented")
if (length(object$weights) > 0) {
stop(paste(
"\nConfidence and prediction intervals for weighted linear models require",
"weights for the x values from which the predictions are to be generated.",
"This is not supported by the internally used predict.lm method.",
sep = "\n"))
}
if (alpha <= 0 | alpha >= 1)
stop("Alpha should be between 0 and 1 (exclusive)")
m <- object
level <- 1 - alpha
y <- m$model[[1]]
x <- m$model[[2]]
if (xlim[1] == "auto") xlim[1] <- 0
if (xlim[2] == "auto") xlim[2] <- max(x)
xlim <- as.numeric(xlim)
newdata <- list(
x = seq(from = xlim[[1]], to = xlim[[2]], length=250))
names(newdata) <- names(m$model)[[2]]
if (is.null(varfunc)) {
varfunc <- if (length(m$weights)) {
function(variable) mean(m$weights)
} else function(variable) rep(1,250)
}
pred.lim <- predict(m, newdata, interval = "prediction",
level=level, weights.newdata = varfunc(m))
conf.lim <- predict(m, newdata, interval = "confidence",
level=level)
yrange.auto <- range(c(0,pred.lim))
if (ylim[1] == "auto") ylim[1] <- yrange.auto[1]
if (ylim[2] == "auto") ylim[2] <- yrange.auto[2]
plot(1,
type = "n",
xlab = xlab,
ylab = ylab,
xlim = as.numeric(xlim),
ylim = as.numeric(ylim)
)
points(x,y, pch = 21, bg = "yellow")
matlines(newdata[[1]], pred.lim, lty = c(1, 4, 4),
col = c("black", "red", "red"))
matlines(newdata[[1]], conf.lim, lty = c(1, 3, 3),
col = c("black", "green4", "green4"))
legend(min(x),
max(pred.lim, na.rm = TRUE),
legend = c("Fitted Line", "Confidence Bands",
"Prediction Bands"),
lty = c(1, 3, 4),
lwd = 2,
col = c("black", "green4", "red"),
horiz = FALSE, cex = 0.9, bg = "gray95")
}