diff options
author | ranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4> | 2006-05-16 19:49:08 +0000 |
---|---|---|
committer | ranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4> | 2006-05-16 19:49:08 +0000 |
commit | 49eff36596275b1dbb5e07c97fb93db182baa27e (patch) | |
tree | dee5073b7ef48bee7e6fa9fc593408f2ad3d2736 | |
parent | 0973370a6e27952df81aaae2a05104195e3bf633 (diff) |
- Took loq and lod apart again. lod is now an implemantation of Massart, loq is
an own variant of DIN 32645 (relative error on x axis).
- Partly make functions work on models where x and y are named different
from "x" and "y" (loq to be done).
git-svn-id: http://kriemhild.uft.uni-bremen.de/svn/chemCal@11 5fad18fb-23f0-0310-ab10-e59a3bee62b4
-rw-r--r-- | DESCRIPTION | 4 | ||||
-rw-r--r-- | R/calplot.R | 11 | ||||
-rw-r--r-- | R/inverse.predict.lm.R | 22 | ||||
-rw-r--r-- | R/lod.R | 23 | ||||
-rw-r--r-- | R/loq.R | 2 | ||||
-rw-r--r-- | inst/doc/chemCal-001.pdf | 4 | ||||
-rw-r--r-- | inst/doc/chemCal.log | 8 | ||||
-rw-r--r-- | inst/doc/chemCal.pdf | bin | 107539 -> 107306 bytes | |||
-rw-r--r-- | man/inverse.predict.Rd | 16 | ||||
-rw-r--r-- | man/lod.Rd | 55 | ||||
-rw-r--r-- | man/loq.Rd | 76 |
11 files changed, 153 insertions, 68 deletions
diff --git a/DESCRIPTION b/DESCRIPTION index 9f45d05..8dc884e 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,6 +1,6 @@ Package: chemCal -Version: 0.05-8 -Date: 2006-05-12 +Version: 0.05-11 +Date: 2006-05-16 Title: Calibration functions for analytical chemistry Author: Johannes Ranke <jranke@uni-bremen.de> Maintainer: Johannes Ranke <jranke@uni-bremen.de> diff --git a/R/calplot.R b/R/calplot.R index feb9727..2deed5a 100644 --- a/R/calplot.R +++ b/R/calplot.R @@ -21,9 +21,10 @@ calplot.lm <- function(object, xlim = "auto", ylim = "auto", m <- object level <- 1 - alpha - x <- m$model$x - y <- m$model$y - newdata <- data.frame(x = seq(0,max(x),length=250)) + y <- m$model[[1]] + x <- m$model[[2]] + newdata <- list(x = seq(0,max(x),length=250)) + names(newdata) <- names(m$model)[[2]] pred.lim <- predict(m, newdata, interval = "prediction",level=level) conf.lim <- predict(m, newdata, interval = "confidence",level=level) if (xlim == "auto") xlim = c(0,max(x)) @@ -36,9 +37,9 @@ calplot.lm <- function(object, xlim = "auto", ylim = "auto", ylim = ylim ) points(x,y, pch = 21, bg = "yellow") - matlines(newdata$x, pred.lim, lty = c(1, 4, 4), + matlines(newdata[[1]], pred.lim, lty = c(1, 4, 4), col = c("black", "red", "red")) - matlines(newdata$x, conf.lim, lty = c(1, 3, 3), + matlines(newdata[[1]], conf.lim, lty = c(1, 3, 3), col = c("black", "green4", "green4")) legend(min(x), diff --git a/R/inverse.predict.lm.R b/R/inverse.predict.lm.R index 2ead9fb..e5f014c 100644 --- a/R/inverse.predict.lm.R +++ b/R/inverse.predict.lm.R @@ -17,32 +17,36 @@ inverse.predict.default <- function(object, newdata, ..., inverse.predict.lm <- function(object, newdata, ..., ws = "auto", alpha = 0.05, ss = "auto") { + yname = names(object$model)[[1]] + xname = names(object$model)[[2]] if (ws == "auto") { ws <- ifelse(length(object$weights) > 0, mean(object$weights), 1) } if (length(object$weights) > 0) { - wx <- split(object$weights,object$model$x) + wx <- split(object$weights,object$model[[xname]]) w <- sapply(wx,mean) } else { - w <- rep(1,length(split(object$model$y,object$model$x))) + w <- rep(1,length(split(object$model[[yname]],object$model[[xname]]))) } .inverse.predict(object = object, newdata = newdata, - ws = ws, alpha = alpha, ss = ss, w = w) + ws = ws, alpha = alpha, ss = ss, w = w, xname = xname, yname = yname) } inverse.predict.rlm <- function(object, newdata, ..., ws = "auto", alpha = 0.05, ss = "auto") { + yname = names(object$model)[[1]] + xname = names(object$model)[[2]] if (ws == "auto") { ws <- mean(object$w) } - wx <- split(object$weights,object$model$x) + wx <- split(object$weights,object$model[[xname]]) w <- sapply(wx,mean) .inverse.predict(object = object, newdata = newdata, - ws = ws, alpha = alpha, ss = ss, w = w) + ws = ws, alpha = alpha, ss = ss, w = w, xname = xname, yname = yname) } -.inverse.predict <- function(object, newdata, ws, alpha, ss, w) +.inverse.predict <- function(object, newdata, ws, alpha, ss, w, xname, yname) { if (length(object$coef) > 2) stop("More than one independent variable in your model - not implemented") @@ -53,12 +57,12 @@ inverse.predict.rlm <- function(object, newdata, ..., ybars <- mean(newdata) m <- length(newdata) - yx <- split(object$model$y,object$model$x) + yx <- split(object$model[[yname]],object$model[[xname]]) n <- length(yx) df <- n - length(objects$coef) x <- as.numeric(names(yx)) ybar <- sapply(yx,mean) - yhatx <- split(object$fitted.values,object$model$x) + yhatx <- split(object$fitted.values,object$model[[xname]]) yhat <- sapply(yhatx,mean) se <- sqrt(sum(w*(ybar - yhat)^2)/df) if (ss == "auto") { @@ -67,7 +71,7 @@ inverse.predict.rlm <- function(object, newdata, ..., ss <- ss } - b1 <- object$coef[["x"]] + b1 <- object$coef[[xname]] ybarw <- sum(w * ybar)/sum(w) @@ -10,18 +10,25 @@ lod.default <- function(object, ..., alpha = 0.05, beta = 0.05) lod.lm <- function(object, ..., alpha = 0.05, beta = 0.05) { - y0 <- predict(object, data.frame(x = 0), interval="prediction", - level = 1 - alpha) + xname <- names(object$model)[[2]] + newdata <- data.frame(0) + names(newdata) <- xname + y0 <- predict(object, newdata, interval="prediction", + level = 1 - 2 * alpha ) yc <- y0[[1,"upr"]] xc <- inverse.predict(object,yc)[["Prediction"]] f <- function(x) { - # Here I need the variance of y values as a function of x or - # y values - # Strangely, setting the confidence level to 0.5 does not result - # in a zero confidence or prediction interval + newdata <- data.frame(x) + names(newdata) <- xname + pi.y <- predict(object, newdata, interval = "prediction", + level = 1 - 2 * beta) + yd <- pi.y[[1,"lwr"]] + (yd - yc)^2 } - lod.x <- optimize(f,interval=c(0,max(object$model$x)))$minimum - lod.y <- predict(object, data.frame(x = lod.x)) + lod.x <- optimize(f,interval=c(0,max(object$model[[xname]])))$minimum + newdata <- data.frame(x = lod.x) + names(lod.x) <- xname + lod.y <- predict(object, data.frame(lod.x)) return(list(x = lod.x, y = lod.y)) } @@ -5,7 +5,7 @@ loq <- function(object, ..., alpha = 0.05, k = 3, n = 1, w = "auto") loq.default <- function(object, ..., alpha = 0.05, k = 3, n = 1, w = "auto") { - stop("lod is only implemented for univariate lm objects.") + stop("loq is only implemented for univariate lm objects.") } loq.lm <- function(object, ..., alpha = 0.05, k = 3, n = 1, w = "auto") diff --git a/inst/doc/chemCal-001.pdf b/inst/doc/chemCal-001.pdf index 8375fd5..748b5e1 100644 --- a/inst/doc/chemCal-001.pdf +++ b/inst/doc/chemCal-001.pdf @@ -2,8 +2,8 @@ %ρ\r 1 0 obj << -/CreationDate (D:20060515234125) -/ModDate (D:20060515234125) +/CreationDate (D:20060516214219) +/ModDate (D:20060516214219) /Title (R Graphics Output) /Producer (R 2.3.0) /Creator (R) diff --git a/inst/doc/chemCal.log b/inst/doc/chemCal.log index 785a8cf..d399d73 100644 --- a/inst/doc/chemCal.log +++ b/inst/doc/chemCal.log @@ -1,4 +1,4 @@ -This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) (format=pdflatex 2006.4.8) 15 MAY 2006 23:41 +This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4) (format=pdflatex 2006.4.5) 16 MAY 2006 21:42 entering extended mode **chemCal.tex (./chemCal.tex @@ -325,8 +325,8 @@ LaTeX Font Info: External font `cmex10' loaded for size [2 <./chemCal-001.pdf>] [3] (./chemCal.aux) ) Here is how much of TeX's memory you used: - 3764 strings out of 94500 - 51832 string characters out of 1175772 + 3764 strings out of 94499 + 51832 string characters out of 1175814 96290 words of memory out of 1000000 6863 multiletter control sequences out of 10000+50000 21774 words of font info for 52 fonts, out of 500000 for 2000 @@ -346,4 +346,4 @@ type1/bluesky/cm/cmbx12.pfb> </var/cache/fonts/pk/ljfour/jknappen/tc/tctt1000.6 xmf-tetex/fonts/type1/bluesky/cm/cmtt10.pfb></usr/share/texmf-tetex/fonts/type1 /bluesky/cm/cmr10.pfb></usr/share/texmf-tetex/fonts/type1/bluesky/cm/cmr12.pfb> </usr/share/texmf-tetex/fonts/type1/bluesky/cm/cmr17.pfb> -Output written on chemCal.pdf (3 pages, 107539 bytes). +Output written on chemCal.pdf (3 pages, 107306 bytes). diff --git a/inst/doc/chemCal.pdf b/inst/doc/chemCal.pdf Binary files differindex e73cc52..6036bd3 100644 --- a/inst/doc/chemCal.pdf +++ b/inst/doc/chemCal.pdf diff --git a/man/inverse.predict.Rd b/man/inverse.predict.Rd index 8c2be9c..5be0250 100644 --- a/man/inverse.predict.Rd +++ b/man/inverse.predict.Rd @@ -57,14 +57,14 @@ p. 200 } \examples{ -data(massart97ex3) -attach(massart97ex3) -yx <- split(y,factor(x)) -s <- round(sapply(yx,sd),digits=2) -w <- round(1/(s^2),digits=3) -weights <- w[factor(x)] -m <- lm(y ~ x,w=weights) + data(massart97ex3) + attach(massart97ex3) + yx <- split(y,factor(x)) + s <- round(sapply(yx,sd),digits=2) + w <- round(1/(s^2),digits=3) + weights <- w[factor(x)] + m <- lm(y ~ x,w=weights) -inverse.predict(m,15,ws = 1.67) + inverse.predict(m,15,ws = 1.67) } \keyword{manip} @@ -3,14 +3,9 @@ \alias{lod.lm} \alias{lod.rlm} \alias{lod.default} -\alias{loq} -\alias{loq.lm} -\alias{loq.rlm} -\alias{loq.default} -\title{Estimate a limit of detection (LOD) or quantification (LOQ)} +\title{Estimate a limit of detection (LOD)} \usage{ - lod(object, \dots, alpha = 0.05, k = 1, n = 1, w = "auto") - loq(object, \dots, alpha = 0.05, k = 3, n = 1, w = "auto") + lod(object, \dots, alpha = 0.05, beta = 0.05) } \arguments{ \item{object}{ @@ -19,40 +14,42 @@ with model formula \code{y ~ x} or \code{y ~ x - 1}, optionally from a weighted regression. } - \item{alpha}{ - The error tolerance for the prediction of x values in the calculation. - } \item{\dots}{ Placeholder for further arguments that might be needed by future implementations. } - \item{k}{ - The inverse of the maximum relative error tolerated at the - desired LOD/LOQ. - } - \item{n}{ - The number of replicate measurements for which the LOD/LOQ should be - specified. + \item{alpha}{ + The error tolerance for the decision limit (critical value). } - \item{w}{ - The weight that should be attributed to the LOD/LOQ. Defaults - to one for unweighted regression, and to the mean of the weights - for weighted regression. See \code{\link{massart97ex3}} for - an example how to take advantage of knowledge about the variance function. + \item{beta}{ + The error tolerance beta for the detection limit. } } \value{ - The estimated limit of detection for a model used for calibration. -} + A list containig the corresponding x and y values of the estimated limit of + detection of a model used for calibration. } \description{ - A useful operationalisation of a lower limit L of a measurement method is - simply the solution of the equation - \deqn{L = k c(L)}{L = k * c(L)} - where c(L) is half of the lenght of the confidence interval at the limit L. + The decision limit (German: Nachweisgrenze) is defined as the signal or + analyte concentration that is significantly different from the blank signal + with a first order error alpha (one-sided significance test). + The detection limit, or more precise, the minimum detectable value + (German: Erfassungsgrenze), is then defined as the signal or analyte + concentration where the probability that the signal is not detected although + the analyte is present (type II or false negative error), is beta (also a + one-sided significance test). +} +\references{ + J. Inczedy, T. Lengyel, and A.M. Ure (2002) International Union of Pure and + Applied Chemistry Compendium of Analytical Nomenclature: Definitive Rules. + Web edition. } \examples{ data(din32645) m <- lm(y ~ x, data = din32645) - lod(m) + # The decision limit (critical value) is obtained by using beta = 0.5: + lod(m, alpha = 0.01, beta = 0.5) # approx. Nachweisgrenze in Dintest 2002 + lod(m, alpha = 0.01, beta = 0.01) + # In the latter case (Erfassungsgrenze), we get a slight deviation from + # Dintest 2002 test data. } \keyword{manip} diff --git a/man/loq.Rd b/man/loq.Rd new file mode 100644 index 0000000..1030399 --- /dev/null +++ b/man/loq.Rd @@ -0,0 +1,76 @@ +\name{loq} +\alias{loq} +\alias{loq.lm} +\alias{loq.rlm} +\alias{loq.default} +\title{Estimate a limit of quantification (LOQ)} +\usage{ + loq(object, \dots, alpha = 0.05, k = 3, n = 1, w = "auto") +} +\arguments{ + \item{object}{ + A univariate model object of class \code{\link{lm}} or + \code{\link[MASS:rlm]{rlm}} + with model formula \code{y ~ x} or \code{y ~ x - 1}, + optionally from a weighted regression. + } + \item{alpha}{ + The error tolerance for the prediction of x values in the calculation. + } + \item{\dots}{ + Placeholder for further arguments that might be needed by + future implementations. + } + \item{k}{ + The inverse of the maximum relative error tolerated at the + desired LOQ. + } + \item{n}{ + The number of replicate measurements for which the LOQ should be + specified. + } + \item{w}{ + The weight that should be attributed to the LOQ. Defaults + to one for unweighted regression, and to the mean of the weights + for weighted regression. See \code{\link{massart97ex3}} for + an example how to take advantage of knowledge about the + variance function. + } +} +\value{ + The estimated limit of quantification for a model used for calibration. +} +\description{ + A useful operationalisation of a limit of quantification is simply the + solution of the equation + \deqn{L = k c(L)}{L = k * c(L)} + where c(L) is half of the length of the confidence interval at the limit L as + estimated by \code{\link{inverse.predict}}. By virtue of this formula, the + limit of detection is the x value, where the relative error + of the quantification with the given calibration model is 1/k. +} +\examples{ + data(massart97ex3) + attach(massart97ex3) + m0 <- lm(y ~ x) + loq(m0) + + # Now we use a weighted regression + yx <- split(y,factor(x)) + s <- round(sapply(yx,sd),digits=2) + w <- round(1/(s^2),digits=3) + weights <- w[factor(x)] + mw <- lm(y ~ x,w=weights) + loq(mw) + + # In order to define the weight at the loq, we can use + # the variance function 1/y for the model + mwy <- lm(y ~ x, w = 1/y) + + # Let's do this with one iteration only + loq(mwy, w = 1 / predict(mwy,list(x = loq(mwy)))) + + # We can get better by doing replicate measurements + loq(mwy, n = 3, w = 1 / predict(mwy,list(x = loq(mwy)))) +} +\keyword{manip} |