diff options
author | Ranke Johannes <johannes.ranke@agroscope.admin.ch> | 2024-07-22 18:38:23 +0200 |
---|---|---|
committer | Ranke Johannes <johannes.ranke@agroscope.admin.ch> | 2024-07-22 18:38:23 +0200 |
commit | d202b127909669c484bc74bb87d629f9e3bea299 (patch) | |
tree | ca162688ffcdbc07329c1d593dfd6bd7653ee398 | |
parent | 8e5a3c88bd1424ed2b930b472a3f6c8e6814e9b2 (diff) |
Update travis build status badge
-rw-r--r-- | README.html | 174 | ||||
-rw-r--r-- | README.md | 84 | ||||
-rw-r--r-- | README.rmd | 2 | ||||
-rw-r--r-- | build.log | 2 |
4 files changed, 148 insertions, 114 deletions
diff --git a/README.html b/README.html index 3bb6cbd..3d9793c 100644 --- a/README.html +++ b/README.html @@ -587,91 +587,135 @@ code .in { color: #008080; } </style> <style> body { - box-sizing: border-box; - min-width: 200px; - max-width: 980px; - margin: 0 auto; - padding: 45px; - padding-top: 0px; +box-sizing: border-box; +min-width: 200px; +max-width: 980px; +margin: 0 auto; +padding: 45px; +padding-top: 0px; } </style> + </head> <body> <!-- README.md is generated from README.rmd. Please edit that file --> -<h1 id="chemcal---calibration-functions-for-analytical-chemistry">chemCal - Calibration functions for analytical chemistry</h1> +<h1 id="chemcal---calibration-functions-for-analytical-chemistry">chemCal - +Calibration functions for analytical chemistry</h1> <!-- badges: start --> -<p><a href="https://cran.r-project.org/package=chemCal"><img src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgYXJpYS1sYWJlbD0iQ1JBTiAwLjIuMiI+CiAgPGxpbmVhckdyYWRpZW50IGlkPSJiIiB4Mj0iMCIgeTI9IjEwMCUiPgogICAgPHN0b3Agb2Zmc2V0PSIwIiBzdG9wLWNvbG9yPSIjYmJiIiBzdG9wLW9wYWNpdHk9Ii4xIi8+CiAgICA8c3RvcCBvZmZzZXQ9IjEiIHN0b3Atb3BhY2l0eT0iLjEiLz4KICA8L2xpbmVhckdyYWRpZW50PgogIDxtYXNrIGlkPSJhIj4KICAgIDxyZWN0IHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgcng9IjMiIGZpbGw9IiNmZmYiLz4KICA8L21hc2s+CiAgPGcgbWFzaz0idXJsKCNhKSI+CiAgICA8cGF0aCBmaWxsPSIjNTU1IiBkPSJNMCAwaDQzdjIwSDB6Ii8+CiAgICA8cGF0aCBmaWxsPSIjNGMxIiBkPSJNNDMgMGg2M3YyMEg0M3oiLz4KICAgIDxwYXRoIGZpbGw9InVybCgjYikiIGQ9Ik0wIDBoODV2MjBIMHoiLz4KICA8L2c+CiAgPGcgZmlsbD0iI2ZmZiIgdGV4dC1hbmNob3I9Im1pZGRsZSIKICAgICBmb250LWZhbWlseT0iRGVqYVZ1IFNhbnMsVmVyZGFuYSxHZW5ldmEsc2Fucy1zZXJpZiIgZm9udC1zaXplPSIxMSI+CiAgICA8dGV4dCB4PSIyMS41IiB5PSIxNSIgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyI+CiAgICAgIENSQU4KICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjIxLjUiIHk9IjE0Ij4KICAgICAgQ1JBTgogICAgPC90ZXh0PgogICAgPHRleHQgeD0iNjMiIHk9IjE1IiBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgMC4yLjIKICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjYzIiB5PSIxNCI+CiAgICAgIDAuMi4yCiAgICA8L3RleHQ+CiAgPC9nPgo8L3N2Zz4=" /></a> <a href="https://app.travis-ci.com/github/jranke/chemCal"><img src="" alt="Build Status" /></a> <a href="https://codecov.io/github/jranke/chemCal"><img src="" alt="codecov" /></a></p> +<p><a href="https://cran.r-project.org/package=chemCal"><img src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgYXJpYS1sYWJlbD0iQ1JBTiAwLjIuMyI+CiAgPGxpbmVhckdyYWRpZW50IGlkPSJiIiB4Mj0iMCIgeTI9IjEwMCUiPgogICAgPHN0b3Agb2Zmc2V0PSIwIiBzdG9wLWNvbG9yPSIjYmJiIiBzdG9wLW9wYWNpdHk9Ii4xIi8+CiAgICA8c3RvcCBvZmZzZXQ9IjEiIHN0b3Atb3BhY2l0eT0iLjEiLz4KICA8L2xpbmVhckdyYWRpZW50PgogIDxtYXNrIGlkPSJhIj4KICAgIDxyZWN0IHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgcng9IjMiIGZpbGw9IiNmZmYiLz4KICA8L21hc2s+CiAgPGcgbWFzaz0idXJsKCNhKSI+CiAgICA8cGF0aCBmaWxsPSIjNTU1IiBkPSJNMCAwaDQzdjIwSDB6Ii8+CiAgICA8cGF0aCBmaWxsPSIjNGMxIiBkPSJNNDMgMGg2M3YyMEg0M3oiLz4KICAgIDxwYXRoIGZpbGw9InVybCgjYikiIGQ9Ik0wIDBoODV2MjBIMHoiLz4KICA8L2c+CiAgPGcgZmlsbD0iI2ZmZiIgdGV4dC1hbmNob3I9Im1pZGRsZSIKICAgICBmb250LWZhbWlseT0iRGVqYVZ1IFNhbnMsVmVyZGFuYSxHZW5ldmEsc2Fucy1zZXJpZiIgZm9udC1zaXplPSIxMSI+CiAgICA8dGV4dCB4PSIyMS41IiB5PSIxNSIgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyI+CiAgICAgIENSQU4KICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjIxLjUiIHk9IjE0Ij4KICAgICAgQ1JBTgogICAgPC90ZXh0PgogICAgPHRleHQgeD0iNjMiIHk9IjE1IiBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgMC4yLjMKICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjYzIiB5PSIxNCI+CiAgICAgIDAuMi4zCiAgICA8L3RleHQ+CiAgPC9nPgo8L3N2Zz4=" /></a> <a href="https://app.travis-ci.com/jranke/chemCal"><svg id="svg_6a7e16d9fbe5b315f689" alt="Build Status" width="90" height="20" viewBox="0 0 90 20"><linearGradient id="svg_6a7e16d9fbe5b315f689_a" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"></stop><stop offset="1" stop-opacity=".1"></stop></linearGradient><rect rx="3" width="90" height="20" fill="#555" /><rect rx="3" x="37" width="53" height="20" fill="#4c1" /><path fill="#4c1" d="M37 0h4v20h-4z" /><rect rx="3" width="90" height="20" fill="url(#a)" /><g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="11"><text x="19.5" y="15" fill="#010101" fill-opacity=".3">build</text><text x="19.5" y="14">build</text><text x="62.5" y="15" fill="#010101" fill-opacity=".3">passing</text><text x="62.5" y="14">passing</text></g></svg></a> <a href="https://codecov.io/github/jranke/chemCal"><svg id="svg_4d167aaf41558a03468c" alt="codecov" width="112" height="20" viewBox="0 0 112 20"> + <linearGradient id="svg_4d167aaf41558a03468c_b" x2="0" y2="100%"> + <stop offset="0" stop-color="#bbb" stop-opacity=".1"></stop> + <stop offset="1" stop-opacity=".1"></stop> + </linearGradient> + <mask id="svg_4d167aaf41558a03468c_a"> + <rect width="112" height="20" rx="3" fill="#fff" /> + </mask> + <g mask="url(#a)"> + <path fill="#555" d="M0 0h73v20H0z" /> + <path fill="#e05d44" d="M73 0h39v20H73z" /> + <path fill="url(#b)" d="M0 0h112v20H0z" /> + </g> + <g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="11"> + <text x="46" y="15" fill="#010101" fill-opacity=".3">codecov</text> + <text x="46" y="14">codecov</text> + <text x="93" y="15" fill="#010101" fill-opacity=".3">53%</text> + <text x="93" y="14">53%</text> + </g> + <svg viewBox="120 -8 60 60"> + <path d="M23.013 0C10.333.009.01 10.22 0 22.762v.058l3.914 2.275.053-.036a11.291 11.291 0 0 1 8.352-1.767 10.911 10.911 0 0 1 5.5 2.726l.673.624.38-.828c.368-.802.793-1.556 1.264-2.24.19-.276.398-.554.637-.851l.393-.49-.484-.404a16.08 16.08 0 0 0-7.453-3.466 16.482 16.482 0 0 0-7.705.449C7.386 10.683 14.56 5.016 23.03 5.01c4.779 0 9.272 1.84 12.651 5.18 2.41 2.382 4.069 5.35 4.807 8.591a16.53 16.53 0 0 0-4.792-.723l-.292-.002a16.707 16.707 0 0 0-1.902.14l-.08.012c-.28.037-.524.074-.748.115-.11.019-.218.041-.327.063-.257.052-.51.108-.75.169l-.265.067a16.39 16.39 0 0 0-.926.276l-.056.018c-.682.23-1.36.511-2.016.838l-.052.026c-.29.145-.584.305-.899.49l-.069.04a15.596 15.596 0 0 0-4.061 3.466l-.145.175c-.29.36-.521.666-.723.96-.17.247-.34.513-.552.864l-.116.199c-.17.292-.32.57-.449.824l-.03.057a16.116 16.116 0 0 0-.843 2.029l-.034.102a15.65 15.65 0 0 0-.786 5.174l.003.214a21.523 21.523 0 0 0 .04.754c.009.119.02.237.032.355.014.145.032.29.049.432l.01.08c.01.067.017.133.026.197.034.242.074.48.119.72.463 2.419 1.62 4.836 3.345 6.99l.078.098.08-.095c.688-.81 2.395-3.38 2.539-4.922l.003-.029-.014-.025a10.727 10.727 0 0 1-1.226-4.956c0-5.76 4.545-10.544 10.343-10.89l.381-.014a11.403 11.403 0 0 1 6.651 1.957l.054.036 3.862-2.237.05-.03v-.056c.006-6.08-2.384-11.793-6.729-16.089C34.932 2.361 29.16 0 23.013 0" fill="#F01F7A" fill-rule="evenodd" /> + </svg></a></p> <!-- badges: end --> <h2 id="overview">Overview</h2> -<p>chemCal is an R package providing some basic functions for conveniently working with linear calibration curves with one explanatory variable.</p> +<p>chemCal is an R package providing some basic functions for +conveniently working with linear calibration curves with one explanatory +variable.</p> <h2 id="installation">Installation</h2> -<p>From within <a href="https://www.r-project.org/">R</a>, get the official chemCal release using</p> -<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true"></a><span class="kw">install.packages</span>(<span class="st">"chemCal"</span>)</span></code></pre></div> +<p>From within <a href="https://www.r-project.org/">R</a>, get the +official chemCal release using</p> +<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"chemCal"</span>)</span></code></pre></div> <h2 id="usage">Usage</h2> -<p>chemCal works with univariate linear models of class <code>lm</code>. Working with one of the datasets coming with chemCal, we can produce a calibration plot using the <code>calplot</code> function:</p> +<p>chemCal works with univariate linear models of class <code>lm</code>. +Working with one of the datasets coming with chemCal, we can produce a +calibration plot using the <code>calplot</code> function:</p> <h3 id="plotting-a-calibration">Plotting a calibration</h3> -<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true"></a><span class="kw">library</span>(chemCal)</span> -<span id="cb2-2"><a href="#cb2-2" aria-hidden="true"></a>m0 <-<span class="st"> </span><span class="kw">lm</span>(y <span class="op">~</span><span class="st"> </span>x, <span class="dt">data =</span> massart97ex3)</span> -<span id="cb2-3"><a href="#cb2-3" aria-hidden="true"></a><span class="kw">calplot</span>(m0)</span></code></pre></div> +<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="fu">library</span>(chemCal)</span> +<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a>m0 <span class="ot"><-</span> <span class="fu">lm</span>(y <span class="sc">~</span> x, <span class="at">data =</span> massart97ex3)</span> +<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a><span class="fu">calplot</span>(m0)</span></code></pre></div> <p><img src="" /><!-- --></p> <h3 id="lod-and-loq">LOD and LOQ</h3> -<p>If you use unweighted regression, as in the above example, we can calculate a Limit Of Detection (LOD) from the calibration data.</p> -<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true"></a><span class="kw">lod</span>(m0)</span> -<span id="cb3-2"><a href="#cb3-2" aria-hidden="true"></a><span class="co">#> $x</span></span> -<span id="cb3-3"><a href="#cb3-3" aria-hidden="true"></a><span class="co">#> [1] 5.407085</span></span> -<span id="cb3-4"><a href="#cb3-4" aria-hidden="true"></a><span class="co">#> </span></span> -<span id="cb3-5"><a href="#cb3-5" aria-hidden="true"></a><span class="co">#> $y</span></span> -<span id="cb3-6"><a href="#cb3-6" aria-hidden="true"></a><span class="co">#> [1] 13.63911</span></span></code></pre></div> -<p>This is the minimum detectable value (German: Erfassungsgrenze), i.e. the value where the probability that the signal is not detected although the analyte is present is below a specified error tolerance beta (default is 0.05 following the IUPAC recommendation).</p> -<p>You can also calculate the decision limit (German: Nachweisgrenze), i.e. the value that is significantly different from the blank signal with an error tolerance alpha (default is 0.05, again following IUPAC recommendations) by setting beta to 0.5.</p> -<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true"></a><span class="kw">lod</span>(m0, <span class="dt">beta =</span> <span class="fl">0.5</span>)</span> -<span id="cb4-2"><a href="#cb4-2" aria-hidden="true"></a><span class="co">#> $x</span></span> -<span id="cb4-3"><a href="#cb4-3" aria-hidden="true"></a><span class="co">#> [1] 2.720388</span></span> -<span id="cb4-4"><a href="#cb4-4" aria-hidden="true"></a><span class="co">#> </span></span> -<span id="cb4-5"><a href="#cb4-5" aria-hidden="true"></a><span class="co">#> $y</span></span> -<span id="cb4-6"><a href="#cb4-6" aria-hidden="true"></a><span class="co">#> [1] 8.314841</span></span></code></pre></div> -<p>Furthermore, you can calculate the Limit Of Quantification (LOQ), being defined as the value where the relative error of the quantification given the calibration model reaches a prespecified value (default is 1/3).</p> -<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true"></a><span class="kw">loq</span>(m0)</span> -<span id="cb5-2"><a href="#cb5-2" aria-hidden="true"></a><span class="co">#> $x</span></span> -<span id="cb5-3"><a href="#cb5-3" aria-hidden="true"></a><span class="co">#> [1] 9.627349</span></span> -<span id="cb5-4"><a href="#cb5-4" aria-hidden="true"></a><span class="co">#> </span></span> -<span id="cb5-5"><a href="#cb5-5" aria-hidden="true"></a><span class="co">#> $y</span></span> -<span id="cb5-6"><a href="#cb5-6" aria-hidden="true"></a><span class="co">#> [1] 22.00246</span></span></code></pre></div> -<h3 id="confidence-intervals-for-measured-values">Confidence intervals for measured values</h3> -<p>Finally, you can get a confidence interval for the values measured using the calibration curve, i.e. for the inverse predictions using the function <code>inverse.predict</code>.</p> -<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true"></a><span class="kw">inverse.predict</span>(m0, <span class="dv">90</span>)</span> -<span id="cb6-2"><a href="#cb6-2" aria-hidden="true"></a><span class="co">#> $Prediction</span></span> -<span id="cb6-3"><a href="#cb6-3" aria-hidden="true"></a><span class="co">#> [1] 43.93983</span></span> -<span id="cb6-4"><a href="#cb6-4" aria-hidden="true"></a><span class="co">#> </span></span> -<span id="cb6-5"><a href="#cb6-5" aria-hidden="true"></a><span class="co">#> $`Standard Error`</span></span> -<span id="cb6-6"><a href="#cb6-6" aria-hidden="true"></a><span class="co">#> [1] 1.576985</span></span> -<span id="cb6-7"><a href="#cb6-7" aria-hidden="true"></a><span class="co">#> </span></span> -<span id="cb6-8"><a href="#cb6-8" aria-hidden="true"></a><span class="co">#> $Confidence</span></span> -<span id="cb6-9"><a href="#cb6-9" aria-hidden="true"></a><span class="co">#> [1] 3.230307</span></span> -<span id="cb6-10"><a href="#cb6-10" aria-hidden="true"></a><span class="co">#> </span></span> -<span id="cb6-11"><a href="#cb6-11" aria-hidden="true"></a><span class="co">#> $`Confidence Limits`</span></span> -<span id="cb6-12"><a href="#cb6-12" aria-hidden="true"></a><span class="co">#> [1] 40.70952 47.17014</span></span></code></pre></div> -<p>If you have replicate measurements of the same sample, you can also give a vector of numbers.</p> -<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true"></a><span class="kw">inverse.predict</span>(m0, <span class="kw">c</span>(<span class="dv">91</span>, <span class="dv">89</span>, <span class="dv">87</span>, <span class="dv">93</span>, <span class="dv">90</span>))</span> -<span id="cb7-2"><a href="#cb7-2" aria-hidden="true"></a><span class="co">#> $Prediction</span></span> -<span id="cb7-3"><a href="#cb7-3" aria-hidden="true"></a><span class="co">#> [1] 43.93983</span></span> -<span id="cb7-4"><a href="#cb7-4" aria-hidden="true"></a><span class="co">#> </span></span> -<span id="cb7-5"><a href="#cb7-5" aria-hidden="true"></a><span class="co">#> $`Standard Error`</span></span> -<span id="cb7-6"><a href="#cb7-6" aria-hidden="true"></a><span class="co">#> [1] 0.796884</span></span> -<span id="cb7-7"><a href="#cb7-7" aria-hidden="true"></a><span class="co">#> </span></span> -<span id="cb7-8"><a href="#cb7-8" aria-hidden="true"></a><span class="co">#> $Confidence</span></span> -<span id="cb7-9"><a href="#cb7-9" aria-hidden="true"></a><span class="co">#> [1] 1.632343</span></span> -<span id="cb7-10"><a href="#cb7-10" aria-hidden="true"></a><span class="co">#> </span></span> -<span id="cb7-11"><a href="#cb7-11" aria-hidden="true"></a><span class="co">#> $`Confidence Limits`</span></span> -<span id="cb7-12"><a href="#cb7-12" aria-hidden="true"></a><span class="co">#> [1] 42.30749 45.57217</span></span></code></pre></div> +<p>If you use unweighted regression, as in the above example, we can +calculate a Limit Of Detection (LOD) from the calibration data.</p> +<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">lod</span>(m0)</span> +<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a><span class="co">#> $x</span></span> +<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a><span class="co">#> [1] 5.407085</span></span> +<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a><span class="co">#> $y</span></span> +<span id="cb3-6"><a href="#cb3-6" tabindex="-1"></a><span class="co">#> [1] 13.63911</span></span></code></pre></div> +<p>This is the minimum detectable value (German: Erfassungsgrenze), +i.e. the value where the probability that the signal is not detected +although the analyte is present is below a specified error tolerance +beta (default is 0.05 following the IUPAC recommendation).</p> +<p>You can also calculate the decision limit (German: Nachweisgrenze), +i.e. the value that is significantly different from the blank signal +with an error tolerance alpha (default is 0.05, again following IUPAC +recommendations) by setting beta to 0.5.</p> +<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="fu">lod</span>(m0, <span class="at">beta =</span> <span class="fl">0.5</span>)</span> +<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a><span class="co">#> $x</span></span> +<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a><span class="co">#> [1] 2.720388</span></span> +<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb4-5"><a href="#cb4-5" tabindex="-1"></a><span class="co">#> $y</span></span> +<span id="cb4-6"><a href="#cb4-6" tabindex="-1"></a><span class="co">#> [1] 8.314841</span></span></code></pre></div> +<p>Furthermore, you can calculate the Limit Of Quantification (LOQ), +being defined as the value where the relative error of the +quantification given the calibration model reaches a prespecified value +(default is 1/3).</p> +<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">loq</span>(m0)</span> +<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a><span class="co">#> $x</span></span> +<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a><span class="co">#> [1] 9.627349</span></span> +<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a><span class="co">#> $y</span></span> +<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a><span class="co">#> [1] 22.00246</span></span></code></pre></div> +<h3 id="confidence-intervals-for-measured-values">Confidence intervals +for measured values</h3> +<p>Finally, you can get a confidence interval for the values measured +using the calibration curve, i.e. for the inverse predictions using the +function <code>inverse.predict</code>.</p> +<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a><span class="fu">inverse.predict</span>(m0, <span class="dv">90</span>)</span> +<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a><span class="co">#> $Prediction</span></span> +<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a><span class="co">#> [1] 43.93983</span></span> +<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a><span class="co">#> $`Standard Error`</span></span> +<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a><span class="co">#> [1] 1.576985</span></span> +<span id="cb6-7"><a href="#cb6-7" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb6-8"><a href="#cb6-8" tabindex="-1"></a><span class="co">#> $Confidence</span></span> +<span id="cb6-9"><a href="#cb6-9" tabindex="-1"></a><span class="co">#> [1] 3.230307</span></span> +<span id="cb6-10"><a href="#cb6-10" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb6-11"><a href="#cb6-11" tabindex="-1"></a><span class="co">#> $`Confidence Limits`</span></span> +<span id="cb6-12"><a href="#cb6-12" tabindex="-1"></a><span class="co">#> [1] 40.70952 47.17014</span></span></code></pre></div> +<p>If you have replicate measurements of the same sample, you can also +give a vector of numbers.</p> +<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a><span class="fu">inverse.predict</span>(m0, <span class="fu">c</span>(<span class="dv">91</span>, <span class="dv">89</span>, <span class="dv">87</span>, <span class="dv">93</span>, <span class="dv">90</span>))</span> +<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a><span class="co">#> $Prediction</span></span> +<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a><span class="co">#> [1] 43.93983</span></span> +<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a><span class="co">#> $`Standard Error`</span></span> +<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a><span class="co">#> [1] 0.796884</span></span> +<span id="cb7-7"><a href="#cb7-7" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb7-8"><a href="#cb7-8" tabindex="-1"></a><span class="co">#> $Confidence</span></span> +<span id="cb7-9"><a href="#cb7-9" tabindex="-1"></a><span class="co">#> [1] 1.632343</span></span> +<span id="cb7-10"><a href="#cb7-10" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb7-11"><a href="#cb7-11" tabindex="-1"></a><span class="co">#> $`Confidence Limits`</span></span> +<span id="cb7-12"><a href="#cb7-12" tabindex="-1"></a><span class="co">#> [1] 42.30749 45.57217</span></span></code></pre></div> <h2 id="reference">Reference</h2> -<p>You can use the R help system to view documentation, or you can have a look at the <a href="https://pkgdown.jrwb.de/chemCal/">online documentation</a>.</p> +<p>You can use the R help system to view documentation, or you can have +a look at the <a href="https://pkgdown.jrwb.de/chemCal/">online +documentation</a>.</p> </body> </html> @@ -1,43 +1,39 @@ ---- -output: github_document ---- <!-- README.md is generated from README.rmd. Please edit that file --> - - # chemCal - Calibration functions for analytical chemistry <!-- badges: start --> + [![](https://www.r-pkg.org/badges/version/chemCal)](https://cran.r-project.org/package=chemCal) -[![Build Status](https://travis-ci.com/jranke/chemCal.svg?branch=master)](https://app.travis-ci.com/github/jranke/chemCal) +[![Build +Status](https://app.travis-ci.com/jranke/chemCal.svg?token=Sq9VuYWyRz2FbBLxu6DK&branch=main)](https://app.travis-ci.com/jranke/chemCal) [![codecov](https://codecov.io/github/jranke/chemCal/branch/master/graphs/badge.svg)](https://codecov.io/github/jranke/chemCal) <!-- badges: end --> ## Overview -chemCal is an R package providing some basic functions for conveniently working -with linear calibration curves with one explanatory variable. +chemCal is an R package providing some basic functions for conveniently +working with linear calibration curves with one explanatory variable. ## Installation -From within [R][r-project], get the official chemCal release using +From within [R](https://www.r-project.org/), get the official chemCal +release using - -```r +``` r install.packages("chemCal") ``` ## Usage -chemCal works with univariate linear models of class `lm`. Working with one of -the datasets coming with chemCal, we can produce a calibration plot using the -`calplot` function: +chemCal works with univariate linear models of class `lm`. Working with +one of the datasets coming with chemCal, we can produce a calibration +plot using the `calplot` function: ### Plotting a calibration - -```r +``` r library(chemCal) m0 <- lm(y ~ x, data = massart97ex3) calplot(m0) @@ -47,11 +43,10 @@ calplot(m0) ### LOD and LOQ -If you use unweighted regression, as in the above example, we can calculate a -Limit Of Detection (LOD) from the calibration data. - +If you use unweighted regression, as in the above example, we can +calculate a Limit Of Detection (LOD) from the calibration data. -```r +``` r lod(m0) #> $x #> [1] 5.407085 @@ -59,18 +54,18 @@ lod(m0) #> $y #> [1] 13.63911 ``` -This is the minimum detectable value (German: Erfassungsgrenze), i.e. the -value where the probability that the signal is not detected although the -analyte is present is below a specified error tolerance beta (default is 0.05 -following the IUPAC recommendation). -You can also calculate the decision limit (German: Nachweisgrenze), i.e. -the value that is significantly different from the blank signal -with an error tolerance alpha (default is 0.05, again following -IUPAC recommendations) by setting beta to 0.5. +This is the minimum detectable value (German: Erfassungsgrenze), +i.e. the value where the probability that the signal is not detected +although the analyte is present is below a specified error tolerance +beta (default is 0.05 following the IUPAC recommendation). +You can also calculate the decision limit (German: Nachweisgrenze), i.e. +the value that is significantly different from the blank signal with an +error tolerance alpha (default is 0.05, again following IUPAC +recommendations) by setting beta to 0.5. -```r +``` r lod(m0, beta = 0.5) #> $x #> [1] 2.720388 @@ -80,11 +75,11 @@ lod(m0, beta = 0.5) ``` Furthermore, you can calculate the Limit Of Quantification (LOQ), being -defined as the value where the relative error of the quantification given the -calibration model reaches a prespecified value (default is 1/3). - +defined as the value where the relative error of the quantification +given the calibration model reaches a prespecified value (default is +1/3). -```r +``` r loq(m0) #> $x #> [1] 9.627349 @@ -95,12 +90,11 @@ loq(m0) ### Confidence intervals for measured values -Finally, you can get a confidence interval for the values -measured using the calibration curve, i.e. for the inverse -predictions using the function `inverse.predict`. +Finally, you can get a confidence interval for the values measured using +the calibration curve, i.e. for the inverse predictions using the +function `inverse.predict`. - -```r +``` r inverse.predict(m0, 90) #> $Prediction #> [1] 43.93983 @@ -115,11 +109,10 @@ inverse.predict(m0, 90) #> [1] 40.70952 47.17014 ``` -If you have replicate measurements of the same sample, -you can also give a vector of numbers. - +If you have replicate measurements of the same sample, you can also give +a vector of numbers. -```r +``` r inverse.predict(m0, c(91, 89, 87, 93, 90)) #> $Prediction #> [1] 43.93983 @@ -136,8 +129,5 @@ inverse.predict(m0, c(91, 89, 87, 93, 90)) ## Reference -You can use the R help system to view documentation, or you can -have a look at the [online documentation][pd-site]. - -[r-project]: https://www.r-project.org/ -[pd-site]: https://pkgdown.jrwb.de/chemCal/ +You can use the R help system to view documentation, or you can have a +look at the [online documentation](https://pkgdown.jrwb.de/chemCal/). @@ -16,7 +16,7 @@ knitr::opts_chunk$set( <!-- badges: start --> [![](https://www.r-pkg.org/badges/version/chemCal)](https://cran.r-project.org/package=chemCal) -[![Build Status](https://travis-ci.com/jranke/chemCal.svg?branch=master)](https://app.travis-ci.com/github/jranke/chemCal) +[![Build Status](https://app.travis-ci.com/jranke/chemCal.svg?token=Sq9VuYWyRz2FbBLxu6DK&branch=main)](https://app.travis-ci.com/jranke/chemCal) [![codecov](https://codecov.io/github/jranke/chemCal/branch/master/graphs/badge.svg)](https://codecov.io/github/jranke/chemCal) <!-- badges: end --> @@ -6,5 +6,5 @@ * checking for LF line-endings in source and make files and shell scripts * checking for empty or unneeded directories * re-saving image files -* building ‘chemCal_0.2.3.tar.gz’ +* building ‘chemCal_0.2.3.9000.tar.gz’ |