aboutsummaryrefslogtreecommitdiff
path: root/R
diff options
context:
space:
mode:
authorranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4>2005-02-15 10:14:01 +0000
committerranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4>2005-02-15 10:14:01 +0000
commita94bd86465fe191102a2bf85a3631c83cd10db0a (patch)
tree489388209c63519def400a55c2ecffe29ba1e56c /R
First import, for archiving purposes.
git-svn-id: http://kriemhild.uft.uni-bremen.de/svn/chemCal@1 5fad18fb-23f0-0310-ab10-e59a3bee62b4
Diffstat (limited to 'R')
-rw-r--r--R/chemCal.R195
1 files changed, 195 insertions, 0 deletions
diff --git a/R/chemCal.R b/R/chemCal.R
new file mode 100644
index 0000000..5de33f8
--- /dev/null
+++ b/R/chemCal.R
@@ -0,0 +1,195 @@
+calm <- function(data)
+{
+ y <- data[[2]]
+ x <- data[[1]]
+ m <- lm(y ~ x)
+ s <- summary(m)
+ if (s$coefficients[1,4] > 0.05)
+ {
+ m <- lm(y ~ x - 1)
+ s <- summary(m)
+ m$intercept <- FALSE
+ } else {
+ m$intercept <- TRUE
+ }
+ class(m) <- "calm"
+ m$yname <- names(data)[[1]]
+ m$xname <- names(data)[[2]]
+ return(m)
+}
+predict.calm <- predict.lm
+print.calm <- print.lm
+summary.calm <- summary.lm
+plot.calm <- function(m,
+ xunit="",yunit="",measurand="",
+ level=0.95)
+{
+ x <- m$model$x
+ y <- m$model$y
+ newdata <- data.frame(x = seq(0,max(x),length=250))
+ pred.lim <- predict(m, newdata, interval = "prediction",level=level)
+ conf.lim <- predict(m, newdata, interval = "confidence",level=level)
+ if (xunit!="") {
+ xlab <- paste("Concentration in ",xunit)
+ } else xlab <- m$xname
+ if (yunit=="") yunit <- m$yname
+ if (measurand!="") {
+ main <- paste("Calibration for",measurand)
+ } else main <- "Calibration"
+ plot(1,
+ xlab = xlab,
+ ylab = yunit,
+ type = "n",
+ main = main,
+ xlim = c(0,max(x)),
+ ylim = range(pred.lim)
+ )
+ points(x,y, pch = 21, bg = "yellow")
+ matlines(newdata$x, pred.lim, lty = c(1, 4, 4),
+ col = c("black", "red", "red"))
+ matlines(newdata$x, conf.lim, lty = c(1, 3, 3),
+ col = c("black", "green4", "green4"))
+
+ legend(min(x),
+ max(pred.lim, na.rm = TRUE),
+ legend = c("Fitted Line", "Confidence Bands",
+ "Prediction Bands"),
+ lty = c(1, 3, 4),
+ lwd = 2,
+ col = c("black", "green4", "red"),
+ horiz = FALSE, cex = 0.9, bg = "gray95")
+}
+predictx.calm <- function(m,measurements)
+{
+ s <- summary(m)
+ xi <- m$model$x
+ yi <- m$model$y
+ n <- length(yi)
+ yobs <- newdata[[1]]
+ p <- length(yobs)
+ if (!m$intercept)
+ {
+ varb1 <- summary(m)$coef["x","Std. Error"]^2
+ xpred <- mean(yobs)/b1
+ varxpred <- (varyobs + xpred^2 * varb1) / b1^2
+ sdxpred <- sqrt(varxpred)
+ } else
+ {
+ b0 <- summary(m)$coef["(Intercept)","Estimate"]
+ b1 <- summary(m)$coef["xi","Estimate"]
+ xpred <- (mean(yobs) - b0)/b1
+ sumxxbar <- sum((xi - mean(xi))^2)
+ if (!syobs)
+ {
+ yybar <- (mean(yobs) - mean(yi))^2
+ sdxpred <- (S/b1) * (1/p + 1/n + yybar/(b1^2 * sumxxbar))^0.5
+ } else
+ {
+ sdxpred <- ((varyobs^0.5/b1) + (S/b1)^2 * (1/n + ((xpred - mean(xi))^2)/sumxxbar))^0.5
+ }
+ }
+ t <- qt((1 + level)/2,ntot - 2)
+ confxpred <- t * sdxpred
+
+ result <- c(estimate=xpred,sdxpred=sdxpred,syobs=syobs,
+ confxpred=confxpred)
+ digits <- max(c(3,round(log10(xpred/confxpred)) + 2))
+ roundedresult <- round(result,digits=digits)
+ confidenceinterval <- paste(roundedresult["estimate"],"+-",
+ roundedresult["confxpred"],xunit)
+ roundedresult[["confidenceinterval"]] <- confidenceinterval
+ invisible(roundedresult)
+}
+calpredict <- function(yobs,xi,yi,xunit="",level=0.95,intercept=FALSE,syobs=FALSE)
+{
+ if (length(xi)!=length(yi))
+ {
+ cat("xi and yi have to be of the same length\n")
+ }
+ xi <- xi[!is.na(yi)]
+ yi <- yi[!is.na(yi)]
+ n <- length(yi)
+ p <- length(yobs)
+ if (!intercept)
+ {
+ m <- lm(yi ~ xi - 1)
+ } else
+ {
+ m <- lm(yi ~ xi)
+ }
+ S <- summary(m)$sigma
+ b1 <- summary(m)$coef["xi","Estimate"]
+
+ if (syobs)
+ {
+ if (is.numeric(syobs))
+ {
+ varyobs <- syobs^2
+ ntot <- n
+ } else
+ {
+ if (length(yobs)==1)
+ {
+ cat("yobs has to contain more than one number vector, if you use syobs=TRUE\n")
+ }
+ varyobs <- var(yobs)
+ ntot <- n + p
+ }
+ } else
+ {
+ varyobs <- S^2
+ ntot <- n
+ }
+
+ if (!intercept)
+ {
+ varb1 <- summary(m)$coef["xi","Std. Error"]^2
+ xpred <- mean(yobs)/b1
+ varxpred <- (varyobs + xpred^2 * varb1) / b1^2
+ sdxpred <- sqrt(varxpred)
+ } else
+ {
+ b0 <- summary(m)$coef["(Intercept)","Estimate"]
+ b1 <- summary(m)$coef["xi","Estimate"]
+ xpred <- (mean(yobs) - b0)/b1
+ sumxxbar <- sum((xi - mean(xi))^2)
+ if (!syobs)
+ {
+ yybar <- (mean(yobs) - mean(yi))^2
+ sdxpred <- (S/b1) * (1/p + 1/n + yybar/(b1^2 * sumxxbar))^0.5
+ } else
+ {
+ sdxpred <- ((varyobs^0.5/b1) + (S/b1)^2 * (1/n + ((xpred - mean(xi))^2)/sumxxbar))^0.5
+ }
+ }
+ t <- qt((1 + level)/2,ntot - 2)
+ confxpred <- t * sdxpred
+
+ result <- c(estimate=xpred,sdxpred=sdxpred,syobs=syobs,
+ confxpred=confxpred)
+ digits <- max(c(3,round(log10(xpred/confxpred)) + 2))
+ roundedresult <- round(result,digits=digits)
+ confidenceinterval <- paste(roundedresult["estimate"],"+-",
+ roundedresult["confxpred"],xunit)
+ roundedresult[["confidenceinterval"]] <- confidenceinterval
+ invisible(roundedresult)
+}
+
+multical <- function(cf,df,intercept=FALSE)
+{
+ rf <- data.frame(name=levels(df$name))
+ substances <- colnames(df)[-1]
+ for (s in substances)
+ {
+ r <- vector()
+ for (sample in levels(df$name))
+ {
+ tmp <- calpredict(subset(df,name==sample)[[s]],
+ cf[["conc"]],cf[[s]],
+ intercept=intercept)
+ r <- c(r,tmp[["confidenceinterval"]])
+ }
+ rf[[s]] <- r
+ }
+ return(rf)
+}

Contact - Imprint