diff options
author | ranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4> | 2005-02-15 10:14:01 +0000 |
---|---|---|
committer | ranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4> | 2005-02-15 10:14:01 +0000 |
commit | a94bd86465fe191102a2bf85a3631c83cd10db0a (patch) | |
tree | 489388209c63519def400a55c2ecffe29ba1e56c /R |
First import, for archiving purposes.
git-svn-id: http://kriemhild.uft.uni-bremen.de/svn/chemCal@1 5fad18fb-23f0-0310-ab10-e59a3bee62b4
Diffstat (limited to 'R')
-rw-r--r-- | R/chemCal.R | 195 |
1 files changed, 195 insertions, 0 deletions
diff --git a/R/chemCal.R b/R/chemCal.R new file mode 100644 index 0000000..5de33f8 --- /dev/null +++ b/R/chemCal.R @@ -0,0 +1,195 @@ +calm <- function(data) +{ + y <- data[[2]] + x <- data[[1]] + m <- lm(y ~ x) + s <- summary(m) + if (s$coefficients[1,4] > 0.05) + { + m <- lm(y ~ x - 1) + s <- summary(m) + m$intercept <- FALSE + } else { + m$intercept <- TRUE + } + class(m) <- "calm" + m$yname <- names(data)[[1]] + m$xname <- names(data)[[2]] + return(m) +} +predict.calm <- predict.lm +print.calm <- print.lm +summary.calm <- summary.lm +plot.calm <- function(m, + xunit="",yunit="",measurand="", + level=0.95) +{ + x <- m$model$x + y <- m$model$y + newdata <- data.frame(x = seq(0,max(x),length=250)) + pred.lim <- predict(m, newdata, interval = "prediction",level=level) + conf.lim <- predict(m, newdata, interval = "confidence",level=level) + if (xunit!="") { + xlab <- paste("Concentration in ",xunit) + } else xlab <- m$xname + if (yunit=="") yunit <- m$yname + if (measurand!="") { + main <- paste("Calibration for",measurand) + } else main <- "Calibration" + plot(1, + xlab = xlab, + ylab = yunit, + type = "n", + main = main, + xlim = c(0,max(x)), + ylim = range(pred.lim) + ) + points(x,y, pch = 21, bg = "yellow") + matlines(newdata$x, pred.lim, lty = c(1, 4, 4), + col = c("black", "red", "red")) + matlines(newdata$x, conf.lim, lty = c(1, 3, 3), + col = c("black", "green4", "green4")) + + legend(min(x), + max(pred.lim, na.rm = TRUE), + legend = c("Fitted Line", "Confidence Bands", + "Prediction Bands"), + lty = c(1, 3, 4), + lwd = 2, + col = c("black", "green4", "red"), + horiz = FALSE, cex = 0.9, bg = "gray95") +} +predictx.calm <- function(m,measurements) +{ + s <- summary(m) + xi <- m$model$x + yi <- m$model$y + n <- length(yi) + yobs <- newdata[[1]] + p <- length(yobs) + if (!m$intercept) + { + varb1 <- summary(m)$coef["x","Std. Error"]^2 + xpred <- mean(yobs)/b1 + varxpred <- (varyobs + xpred^2 * varb1) / b1^2 + sdxpred <- sqrt(varxpred) + } else + { + b0 <- summary(m)$coef["(Intercept)","Estimate"] + b1 <- summary(m)$coef["xi","Estimate"] + xpred <- (mean(yobs) - b0)/b1 + sumxxbar <- sum((xi - mean(xi))^2) + if (!syobs) + { + yybar <- (mean(yobs) - mean(yi))^2 + sdxpred <- (S/b1) * (1/p + 1/n + yybar/(b1^2 * sumxxbar))^0.5 + } else + { + sdxpred <- ((varyobs^0.5/b1) + (S/b1)^2 * (1/n + ((xpred - mean(xi))^2)/sumxxbar))^0.5 + } + } + t <- qt((1 + level)/2,ntot - 2) + confxpred <- t * sdxpred + + result <- c(estimate=xpred,sdxpred=sdxpred,syobs=syobs, + confxpred=confxpred) + digits <- max(c(3,round(log10(xpred/confxpred)) + 2)) + roundedresult <- round(result,digits=digits) + confidenceinterval <- paste(roundedresult["estimate"],"+-", + roundedresult["confxpred"],xunit) + roundedresult[["confidenceinterval"]] <- confidenceinterval + invisible(roundedresult) +} +calpredict <- function(yobs,xi,yi,xunit="",level=0.95,intercept=FALSE,syobs=FALSE) +{ + if (length(xi)!=length(yi)) + { + cat("xi and yi have to be of the same length\n") + } + xi <- xi[!is.na(yi)] + yi <- yi[!is.na(yi)] + n <- length(yi) + p <- length(yobs) + if (!intercept) + { + m <- lm(yi ~ xi - 1) + } else + { + m <- lm(yi ~ xi) + } + S <- summary(m)$sigma + b1 <- summary(m)$coef["xi","Estimate"] + + if (syobs) + { + if (is.numeric(syobs)) + { + varyobs <- syobs^2 + ntot <- n + } else + { + if (length(yobs)==1) + { + cat("yobs has to contain more than one number vector, if you use syobs=TRUE\n") + } + varyobs <- var(yobs) + ntot <- n + p + } + } else + { + varyobs <- S^2 + ntot <- n + } + + if (!intercept) + { + varb1 <- summary(m)$coef["xi","Std. Error"]^2 + xpred <- mean(yobs)/b1 + varxpred <- (varyobs + xpred^2 * varb1) / b1^2 + sdxpred <- sqrt(varxpred) + } else + { + b0 <- summary(m)$coef["(Intercept)","Estimate"] + b1 <- summary(m)$coef["xi","Estimate"] + xpred <- (mean(yobs) - b0)/b1 + sumxxbar <- sum((xi - mean(xi))^2) + if (!syobs) + { + yybar <- (mean(yobs) - mean(yi))^2 + sdxpred <- (S/b1) * (1/p + 1/n + yybar/(b1^2 * sumxxbar))^0.5 + } else + { + sdxpred <- ((varyobs^0.5/b1) + (S/b1)^2 * (1/n + ((xpred - mean(xi))^2)/sumxxbar))^0.5 + } + } + t <- qt((1 + level)/2,ntot - 2) + confxpred <- t * sdxpred + + result <- c(estimate=xpred,sdxpred=sdxpred,syobs=syobs, + confxpred=confxpred) + digits <- max(c(3,round(log10(xpred/confxpred)) + 2)) + roundedresult <- round(result,digits=digits) + confidenceinterval <- paste(roundedresult["estimate"],"+-", + roundedresult["confxpred"],xunit) + roundedresult[["confidenceinterval"]] <- confidenceinterval + invisible(roundedresult) +} + +multical <- function(cf,df,intercept=FALSE) +{ + rf <- data.frame(name=levels(df$name)) + substances <- colnames(df)[-1] + for (s in substances) + { + r <- vector() + for (sample in levels(df$name)) + { + tmp <- calpredict(subset(df,name==sample)[[s]], + cf[["conc"]],cf[[s]], + intercept=intercept) + r <- c(r,tmp[["confidenceinterval"]]) + } + rf[[s]] <- r + } + return(rf) +} |