diff options
author | ranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4> | 2006-05-12 21:59:33 +0000 |
---|---|---|
committer | ranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4> | 2006-05-12 21:59:33 +0000 |
commit | 69504b635d388507bce650c44b3bfe17cad3383e (patch) | |
tree | 120114ff6dc2d1aeb4716efef90d71257ac47501 /man | |
parent | 6d118690c0cae02fc5cd4b28c1a67eecde4d9f60 (diff) |
- Fixed the inverse prediction
- Now I have a working approach for the calculation of LOD and LOQ,
but it seems to be different from what everybody else is doing
(e.g. Massart chaper 13). I like it, however. Maybe it even
yields a paper.
git-svn-id: http://kriemhild.uft.uni-bremen.de/svn/chemCal@8 5fad18fb-23f0-0310-ab10-e59a3bee62b4
Diffstat (limited to 'man')
-rw-r--r-- | man/calplot.lm.Rd | 2 | ||||
-rw-r--r-- | man/din32645.Rd | 12 | ||||
-rw-r--r-- | man/inverse.predict.Rd | 13 | ||||
-rw-r--r-- | man/lod.Rd | 58 | ||||
-rw-r--r-- | man/massart97ex3.Rd | 26 |
5 files changed, 104 insertions, 7 deletions
diff --git a/man/calplot.lm.Rd b/man/calplot.lm.Rd index efdea3d..6d3f52d 100644 --- a/man/calplot.lm.Rd +++ b/man/calplot.lm.Rd @@ -30,7 +30,7 @@ The label of the y axis. } \item{alpha}{ - The confidence level for the confidence and prediction bands. + The error tolerance level for the confidence and prediction bands. } } \value{ diff --git a/man/din32645.Rd b/man/din32645.Rd index 1a3c046..d251b7c 100644 --- a/man/din32645.Rd +++ b/man/din32645.Rd @@ -13,9 +13,19 @@ data(din32645) m <- lm(y ~ x, data=din32645) calplot(m) -prediction <- inverse.predict(m,3500,alpha=0.01) +(prediction <- inverse.predict(m,3500,alpha=0.01)) # This should give 0.074 according to DIN (cited from the Dintest test data) round(prediction$Confidence,3) + +# According to Dintest, we should get 0.07, but we get 0.0759 +lod(m, alpha = 0.01) + +# In German, there is the "Erfassungsgrenze", with k = 2, +# and we should get 0.14 according to Dintest +lod(m, k = 2, alpha = 0.01) + +# According to Dintest, we should get 0.21, we get 0.212 +loq(m, alpha = 0.01) } \references{ DIN 32645 (equivalent to ISO 11843) diff --git a/man/inverse.predict.Rd b/man/inverse.predict.Rd index d773e58..8c2be9c 100644 --- a/man/inverse.predict.Rd +++ b/man/inverse.predict.Rd @@ -4,9 +4,8 @@ \alias{inverse.predict.rlm} \alias{inverse.predict.default} \title{Predict x from y for a linear calibration} -\usage{inverse.predict(object, newdata, - ws = ifelse(length(object$weights) > 0, mean(object$weights), 1), - alpha=0.05, ss = "auto") +\usage{inverse.predict(object, newdata, \dots, + ws, alpha=0.05, ss = "auto") } \arguments{ \item{object}{ @@ -17,12 +16,16 @@ \item{newdata}{ A vector of observed y values for one sample. } + \item{\dots}{ + Placeholder for further arguments that might be needed by + future implementations. + } \item{ws}{ The weight attributed to the sample. The default is to take the mean of the weights in the model, if there are any. } \item{alpha}{ - The confidence level for the confidence interval to be reported. + The error tolerance level for the confidence interval to be reported. } \item{ss}{ The estimated standard error of the sample measurements. The @@ -62,6 +65,6 @@ w <- round(1/(s^2),digits=3) weights <- w[factor(x)] m <- lm(y ~ x,w=weights) -inverse.predict(m,c(15)) +inverse.predict(m,15,ws = 1.67) } \keyword{manip} diff --git a/man/lod.Rd b/man/lod.Rd new file mode 100644 index 0000000..e6ce345 --- /dev/null +++ b/man/lod.Rd @@ -0,0 +1,58 @@ +\name{lod} +\alias{lod} +\alias{lod.lm} +\alias{lod.rlm} +\alias{lod.default} +\alias{loq} +\alias{loq.lm} +\alias{loq.rlm} +\alias{loq.default} +\title{Estimate a limit of detection (LOD) or quantification (LOQ)} +\usage{ + lod(object, \dots, alpha = 0.05, k = 1, n = 1, w = "auto") + loq(object, \dots, alpha = 0.05, k = 3, n = 1, w = "auto") +} +\arguments{ + \item{object}{ + A univariate model object of class \code{\link{lm}} or + \code{\link[MASS:rlm]{rlm}} + with model formula \code{y ~ x} or \code{y ~ x - 1}, + optionally from a weighted regression. + } + \item{alpha}{ + The error tolerance for the prediction of x values in the calculation. + } + \item{\dots}{ + Placeholder for further arguments that might be needed by + future implementations. + } + \item{k}{ + The inverse of the maximum relative error tolerated at the + desired LOD/LOQ. + } + \item{n}{ + The number of replicate measurements for which the LOD/LOQ should be + specified. + } + \item{w}{ + The weight that should be attributed to the LOD/LOQ. Defaults + to one for unweighted regression, and to the mean of the weights + for weighted regression. See \code{\link{massart97ex3}} for + an example how to take advantage of knowledge about the variance function. + } +} +\value{ + The estimated limit of detection for a model used for calibration. +} +\description{ + A useful operationalisation of a lower limit L of a measurement method is + simply the solution of the equation + \deqn{L = k c(L)}{L = k * c(L)} + where c(L) is half of the lenght of the confidence interval at the limit L. +} +\examples{ + data(din32645) + m <- lm(y ~ x, data = din32645) + lod(m) +} +\keyword{manip} diff --git a/man/massart97ex3.Rd b/man/massart97ex3.Rd index 1dabf90..2618709 100644 --- a/man/massart97ex3.Rd +++ b/man/massart97ex3.Rd @@ -10,6 +10,32 @@ A dataframe containing 6 levels of x values with 5 observations of y for each level. } +\examples{ +data(massart97ex3) +attach(massart97ex3) +yx <- split(y,x) +ybar <- sapply(yx,mean) +s <- round(sapply(yx,sd),digits=2) +w <- round(1/(s^2),digits=3) +weights <- w[factor(x)] +m <- lm(y ~ x,w=weights) +# The following concords with the book +inverse.predict(m, 15, ws = 1.67) +inverse.predict(m, 90, ws = 0.145) + +calplot(m) + +m0 <- lm(y ~ x) +lod(m0) +lod(m) + +# Now we want to take advantage of the lower weights at lower y values +m2 <- lm(y ~ x, w = 1/y) +# To get a reasonable weight for the lod, we need to estimate it and predict +# a y value for it +yhat.lod <- predict(m,data.frame(x = lod(m2))) +lod(m2,w=1/yhat.lod,k=3) +} \source{ Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J., Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics: Part A, p. 188 |