aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.Rbuildignore4
-rw-r--r--.github/.gitignore1
-rw-r--r--.github/workflows/R-CMD-check.yaml51
-rw-r--r--.github/workflows/test-coverage.yaml61
-rw-r--r--.gitignore3
-rw-r--r--.travis.yml9
-rw-r--r--DESCRIPTION17
-rw-r--r--GNUmakefile12
-rw-r--r--NAMESPACE4
-rw-r--r--NEWS.md4
-rw-r--r--R/chemCal-package.R86
-rw-r--r--R/linearity.R107
-rw-r--r--README.html141
-rw-r--r--README.md18
-rw-r--r--README.rmd4
-rw-r--r--build.log2
-rw-r--r--check.log29
-rw-r--r--codecov.yml14
-rw-r--r--data/din38402b1.rdabin0 -> 337 bytes
-rw-r--r--data/din38402b3.rdabin0 -> 281 bytes
-rw-r--r--data/din38402b6.rdabin0 -> 275 bytes
-rw-r--r--data/din38402c3.rdabin0 -> 277 bytes
-rw-r--r--docs/404.html2
-rw-r--r--docs/articles/chemCal.html4
-rw-r--r--docs/articles/index.html2
-rw-r--r--docs/authors.html2
-rw-r--r--docs/index.html2
-rw-r--r--docs/news/index.html2
-rw-r--r--docs/pkgdown.yml2
-rw-r--r--docs/reference/calplot.html2
-rw-r--r--docs/reference/din32645.html2
-rw-r--r--docs/reference/index.html2
-rw-r--r--docs/reference/inverse.predict.html2
-rw-r--r--docs/reference/lod.html15
-rw-r--r--docs/reference/loq.html13
-rw-r--r--docs/reference/massart97ex1.html2
-rw-r--r--docs/reference/massart97ex3.html2
-rw-r--r--docs/reference/rl95_cadmium.html2
-rw-r--r--docs/reference/rl95_toluene.html2
-rw-r--r--docs/reference/utstats14.html2
-rw-r--r--man/din32645.Rd3
-rw-r--r--man/din38402b1.Rd23
-rw-r--r--man/din38402b3.Rd24
-rw-r--r--man/din38402b6.Rd23
-rw-r--r--man/din38402c3.Rd22
-rw-r--r--man/linearity.Rd64
-rw-r--r--man/lod.Rd8
-rw-r--r--man/loq.Rd6
-rw-r--r--man/massart97ex1.Rd3
-rw-r--r--man/massart97ex3.Rd3
-rw-r--r--man/rl95_cadmium.Rd3
-rw-r--r--man/rl95_toluene.Rd3
-rw-r--r--man/utstats14.Rd3
53 files changed, 673 insertions, 144 deletions
diff --git a/.Rbuildignore b/.Rbuildignore
index f0b4d3d..7fdd16c 100644
--- a/.Rbuildignore
+++ b/.Rbuildignore
@@ -9,3 +9,7 @@ README.html
.travis.yml
experimental
test.log$
+^codecov\.yml$
+^\.github$
+^.*\.Rproj$
+^\.Rproj\.user$
diff --git a/.github/.gitignore b/.github/.gitignore
new file mode 100644
index 0000000..2d19fc7
--- /dev/null
+++ b/.github/.gitignore
@@ -0,0 +1 @@
+*.html
diff --git a/.github/workflows/R-CMD-check.yaml b/.github/workflows/R-CMD-check.yaml
new file mode 100644
index 0000000..1429649
--- /dev/null
+++ b/.github/workflows/R-CMD-check.yaml
@@ -0,0 +1,51 @@
+# Workflow derived from https://github.com/r-lib/actions/tree/v2/examples
+# Need help debugging build failures? Start at https://github.com/r-lib/actions#where-to-find-help
+on:
+ push:
+ branches: [main, master]
+ pull_request:
+
+name: R-CMD-check.yaml
+
+permissions: read-all
+
+jobs:
+ R-CMD-check:
+ runs-on: ${{ matrix.config.os }}
+
+ name: ${{ matrix.config.os }} (${{ matrix.config.r }})
+
+ strategy:
+ fail-fast: false
+ matrix:
+ config:
+ - {os: macos-latest, r: 'release'}
+ #- {os: windows-latest, r: 'release'}
+ - {os: ubuntu-latest, r: 'devel', http-user-agent: 'release'}
+ #- {os: ubuntu-latest, r: 'release'}
+ # - {os: ubuntu-latest, r: 'oldrel-1'}
+
+ env:
+ GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}
+ R_KEEP_PKG_SOURCE: yes
+
+ steps:
+ - uses: actions/checkout@v4
+
+ - uses: r-lib/actions/setup-pandoc@v2
+
+ - uses: r-lib/actions/setup-r@v2
+ with:
+ r-version: ${{ matrix.config.r }}
+ http-user-agent: ${{ matrix.config.http-user-agent }}
+ use-public-rspm: true
+
+ - uses: r-lib/actions/setup-r-dependencies@v2
+ with:
+ extra-packages: any::rcmdcheck
+ needs: check
+
+ - uses: r-lib/actions/check-r-package@v2
+ with:
+ upload-snapshots: true
+ build_args: 'c("--no-manual","--compact-vignettes=gs+qpdf")'
diff --git a/.github/workflows/test-coverage.yaml b/.github/workflows/test-coverage.yaml
new file mode 100644
index 0000000..e050312
--- /dev/null
+++ b/.github/workflows/test-coverage.yaml
@@ -0,0 +1,61 @@
+# Workflow derived from https://github.com/r-lib/actions/tree/v2/examples
+# Need help debugging build failures? Start at https://github.com/r-lib/actions#where-to-find-help
+on:
+ push:
+ branches: [main, master]
+ pull_request:
+
+name: test-coverage.yaml
+
+permissions: read-all
+
+jobs:
+ test-coverage:
+ runs-on: ubuntu-latest
+ env:
+ GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}
+
+ steps:
+ - uses: actions/checkout@v4
+
+ - uses: r-lib/actions/setup-r@v2
+ with:
+ use-public-rspm: true
+
+ - uses: r-lib/actions/setup-r-dependencies@v2
+ with:
+ extra-packages: any::covr, any::xml2
+ needs: coverage
+
+ - name: Test coverage
+ run: |
+ cov <- covr::package_coverage(
+ quiet = FALSE,
+ clean = FALSE,
+ install_path = file.path(normalizePath(Sys.getenv("RUNNER_TEMP"), winslash = "/"), "package")
+ )
+ covr::to_cobertura(cov)
+ shell: Rscript {0}
+
+ - uses: codecov/codecov-action@v4
+ with:
+ # Fail if error if not on PR, or if on PR and token is given
+ fail_ci_if_error: ${{ github.event_name != 'pull_request' || secrets.CODECOV_TOKEN }}
+ file: ./cobertura.xml
+ plugin: noop
+ disable_search: true
+ token: ${{ secrets.CODECOV_TOKEN }}
+
+ - name: Show testthat output
+ if: always()
+ run: |
+ ## --------------------------------------------------------------------
+ find '${{ runner.temp }}/package' -name 'testthat.Rout*' -exec cat '{}' \; || true
+ shell: bash
+
+ - name: Upload test results
+ if: failure()
+ uses: actions/upload-artifact@v4
+ with:
+ name: coverage-test-failures
+ path: ${{ runner.temp }}/package
diff --git a/.gitignore b/.gitignore
index b752ef4..1bee8d8 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,3 +1,6 @@
chemCal.Rcheck
chemCal_*.tar.gz
experimental
+.Rproj.user
+.Rhistory
+*.Rproj
diff --git a/.travis.yml b/.travis.yml
deleted file mode 100644
index 712829e..0000000
--- a/.travis.yml
+++ /dev/null
@@ -1,9 +0,0 @@
-language: r
-cache: packages
-r:
- - release
- - devel
-github_packages:
- - r-lib/covr
-after_success:
- - Rscript -e 'covr::codecov()'
diff --git a/DESCRIPTION b/DESCRIPTION
index 806d3d5..d8a9779 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,10 +1,14 @@
Package: chemCal
-Version: 0.2.3
-Date: 2022-03-31
+Version: 0.2.3.9000
+Date: 2025-01-25
Title: Calibration Functions for Analytical Chemistry
-Authors@R: c(person("Johannes", "Ranke", role = c("aut", "cre", "cph"),
- email = "johannes.ranke@jrwb.de",
- comment = c(ORCID = "0000-0003-4371-6538")))
+Authors@R: c(
+ person(c("Anıl", "A."), "Tellbüscher", role = "aut",
+ comment = "Linearity tests"),
+ person("Johannes", "Ranke", role = c("aut", "cre", "cph"),
+ email = "johannes.ranke@jrwb.de",
+ comment = c(ORCID = "0000-0003-4371-6538")))
+Depends: R (>= 3.5.0)
Suggests: MASS, knitr, testthat, investr, covr, rmarkdown
Description: Simple functions for plotting linear
calibration functions and estimating standard errors for measurements
@@ -20,4 +24,5 @@ VignetteBuilder: knitr
Encoding: UTF-8
BugReports: https://github.com/jranke/chemCal/issues
URL: https://pkgdown.jrwb.de/chemCal/, https://cgit.jrwb.de/chemCal/about
-RoxygenNote: 7.1.2
+Roxygen: list(markdown = TRUE)
+RoxygenNote: 7.3.2
diff --git a/GNUmakefile b/GNUmakefile
index b7404b6..0c5a155 100644
--- a/GNUmakefile
+++ b/GNUmakefile
@@ -28,16 +28,19 @@ all: build
$(TGZ): $(pkgfiles) vignettes
"$(RBIN)/R" CMD build . 2>&1 | tee build.log
-build: $(TGZ)
+roxy:
+ Rscript -e "roxygen2::roxygenize(roclets = c('rd', 'collate', 'namespace'))"
+
+build: roxy $(TGZ)
README.html: README.rmd
"$(RBIN)/Rscript" -e "rmarkdown::render('README.rmd', clean = FALSE)"
mv README.knit.md README.md
-install: build
+install: roxy build
"$(RBIN)/R" CMD INSTALL $(TGZ)
-check: build
+check: roxy build
"$(RBIN)/R" CMD check --as-cran $(TGZ) 2>&1 | tee check.log
vignettes/%.html: vignettes/%.Rmd vignettes/refs.bib
@@ -65,3 +68,6 @@ clean:
$(RM) -r vignettes/*_files
$(RM) -r vignettes/*.R
$(RM) Rplots.pdf
+
+
+.PHONY: roxy build install check pd winbuilder test clean
diff --git a/NAMESPACE b/NAMESPACE
index 5f98a2a..95e274b 100644
--- a/NAMESPACE
+++ b/NAMESPACE
@@ -11,12 +11,16 @@ S3method(loq,default)
S3method(loq,lm)
export(calplot)
export(inverse.predict)
+export(linearity)
export(lod)
export(loq)
+importFrom(graphics,abline)
importFrom(graphics,legend)
+importFrom(graphics,lines)
importFrom(graphics,matlines)
importFrom(graphics,plot)
importFrom(graphics,points)
+importFrom(stats,median)
importFrom(stats,optimize)
importFrom(stats,predict)
importFrom(stats,qt)
diff --git a/NEWS.md b/NEWS.md
index 5e86e24..a680498 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -1,3 +1,7 @@
+# chemCal 0.2.3.9000
+
+- 'R/linearity.R', 'data/din38402*.rda': Add linearity tests and data from DIN 38402 using a pull request by Anil Axel Tellbüscher
+
# chemCal 0.2.3
- Make the use of the 'investr' package conditional in testthat tests, update maintainer e-mail address
diff --git a/R/chemCal-package.R b/R/chemCal-package.R
index 8cc8c76..54ab190 100644
--- a/R/chemCal-package.R
+++ b/R/chemCal-package.R
@@ -54,7 +54,7 @@
#' # LQ = 3.04 * LC (Currie 1999, p. 120)
#' 3.04 * lod(m, alpha = 0.01, beta = 0.5)$x
#'
-NULL
+"din32645"
@@ -72,7 +72,7 @@ NULL
#' Lewi, P.J., Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and
#' Qualimetrics: Part A, Chapter 8.
#' @keywords datasets
-NULL
+"massart97ex1"
@@ -128,7 +128,7 @@ NULL
#' # of 15, but the graphical procedure of Massart (p. 201) to derive the
#' # variances on which the weights are based is quite inaccurate anyway.
#'
-NULL
+"massart97ex3"
@@ -147,7 +147,7 @@ NULL
#' @source Rocke, David M. und Lorenzato, Stefan (1995) A two-component model
#' for measurement error in analytical chemistry. Technometrics 37(2), 176-184.
#' @keywords datasets
-NULL
+"rl95_cadmium"
@@ -167,7 +167,7 @@ NULL
#' @source Rocke, David M. und Lorenzato, Stefan (1995) A two-component model
#' for measurement error in analytical chemistry. Technometrics 37(2), 176-184.
#' @keywords datasets
-NULL
+"rl95_toluene"
@@ -188,7 +188,81 @@ NULL
#' Toronto.
#' \url{https://sites.chem.utoronto.ca/chemistry/coursenotes/analsci/stats/index.html}
#' @keywords datasets
-NULL
+"utstats14"
+
+
+#' Nitrite calibration data
+#'
+#' Example dataset B.1 from DIN 38402 with concentrations in µg/L and the extinction
+#' as response measured using continuous flow analysis (CFA) according to
+#' ISO 13395.
+#'
+#' @name din38402b1
+#' @docType data
+#' @format A tibble containing 12 concentration levels with the respective
+#' instrument response values.
+#' @references DIN 38402-51:2017-05, Beuth Verlag, Berlin.
+#' https://dx.doi.org/10.31030/2657448
+#' @keywords datasets
+"din38402b1"
+
+
+
+
+
+#' Copper calibration data
+#'
+#' Example dataset B.3 from DIN 38402. Cu was measured according to ISO 11885,
+#' using ICP-OES. The concentration are reported in mg/L and the response as
+#' counts/s, describing the count of photons that are detected by the
+#' photomultiplier detector of the device.
+#'
+#' @name din38402b3
+#' @docType data
+#' @format A tibble containing 13 concentration levels and the respective
+#' instrument response values.
+#' @references DIN 38402-51:2017-05, Beuth Verlag, Berlin.
+#' https://dx.doi.org/10.31030/2657448
+#' @keywords datasets
+"din38402b3"
+
+
+
+
+
+#' Carbamazepin calibration data
+#'
+#' Example dataset B.6 from DIN 38402 measured using LC-MS/MS. The
+#' concentrations are reported in in µg/L and the response in arbitrary
+#' units (AU).
+#'
+#' @name din38402b6
+#' @docType data
+#' @format A tibble containing 12 concentration levels and the respective
+#' instrument response values.
+#' @references DIN 38402-51:2017-05, Beuth Verlag, Berlin.
+#' https://dx.doi.org/10.31030/2657448
+#' @keywords datasets
+"din38402b6"
+
+
+
+
+
+#' Iron calibration data
+#'
+#' Example dataset C.3 from DIN 38402 determined by ion chromatography.
+#' Concentrations are reported in mg/L and the extinction as response.
+#'
+#' @name din38402c3
+#' @docType data
+#' @format A tibble containing 10 concentration levels and the respective
+#' response values.
+#' @references DIN 38402-51:2017-05, Beuth Verlag, Berlin.
+#' https://dx.doi.org/10.31030/2657448
+#' @keywords datasets
+"din38402c3"
+
diff --git a/R/linearity.R b/R/linearity.R
new file mode 100644
index 0000000..8a4f09b
--- /dev/null
+++ b/R/linearity.R
@@ -0,0 +1,107 @@
+#' Assess the linearity of a calibration curve
+#'
+#' A function to create diagnostic plots for the assessment of the linearity of
+#' calibration data based on their point-to-point slope or the curvature.
+#' The underlying methods follow ISO 84 66-1:2021 and DIN 32 402-51:2017
+#' (German Industrial Norm).
+#'
+#' The point-to-point slope method is based on the assumption that the slope
+#' between two points should not vary greatly within the linear range.
+#'
+#' The curvature method is similar to the point-to-point slope method. Here,
+#' the ratio between the instrument signal and the concentration of the
+#' calibration standard is assumed not to vary greatly within the linear range.
+#'
+#' The use of the Mandel test is discouraged due to its limitations in the
+#' identification of non-linear behaviour of calibration curves (Andrade and
+#' Gomes-Carracedo, 2013).
+#'
+#' @param x numeric vector of independent values (usually concentrations).
+#' @param y numeric vector of dependent values (usually the signal of the
+#' analytical device).
+#' @param method character string. Supported methods are "slope" and
+#' "curvature".
+#' @param tolerance numeric value between 0 and 1, describing the acceptable
+#' deviation from the median of the slopes or the signal-to-concentration
+#' ratio. The default tolerance is 10%.
+#' @return returns a diagnostic plot
+#'
+#' @author Anıl Axel Tellbüscher
+#'
+#' @importFrom graphics abline
+#' @importFrom graphics lines
+#' @importFrom stats median
+#'
+#' @examples
+#' # Continuous Flow Analysis (CFA) data
+#' data(din38402b1)
+#'
+#' # Point-to-point slope plot
+#' linearity(din38402b1$conc, din38402b1$ext, method = "slope")
+#'
+#' # Curvature plot
+#' linearity(din38402b1$conc, din38402b1$ext, method = "curvature")
+#'
+#' @references ISO 8466-1:2021. Water quality — Calibration and evaluation of
+#' analytical methods — Part 1: Linear calibration function
+#'
+#' J. M. Andrade and M. P. Gomez-Carracedo (2013) Notes on the use of
+#' Mandel's test to check for nonlinearity in laboratory calibrations.
+#' Analytical Methods 5(5), 1145 - 1149.
+#'
+#' @export
+# Function to assess linearity of data using either slope or curvature method
+linearity <- function(x, y, method = c("slope", "curvature"), tolerance = 0.1) {
+
+ # Check data integrity
+ # Ensure that x and y vectors have the same length
+ stopifnot("x and y must have the same length!" = length(x) == length(y))
+
+ method <- match.arg(method)
+
+ # Calculate the 'result' based on the chosen method
+ if (method == "slope") {
+ # For the 'slope' method, calculate the difference between consecutive points
+ x_diff = diff(x) # Difference in x values
+ y_diff = diff(y) # Difference in y values
+ result = y_diff / x_diff # Point-to-point slope (rate of change)
+ } else if (method == "curvature") {
+ # For the 'curvature' method, calculate the signal-to-concentration ratio
+ result = y / x # Element-wise division of y by x
+ }
+
+ # Calculate the median of the results for tolerance check
+ result_median <- median(result)
+
+ # Define upper and lower tolerance boundaries
+ upper_tolerance <- result_median + tolerance * result_median
+ lower_tolerance <- result_median - tolerance * result_median
+
+ # Create a data frame to store the result and corresponding indices
+ df <- data.frame(result = result, index = 1:length(result))
+
+ # Identify points that fall outside the tolerance range
+ outside_tolerance <- rbind(
+ subset(df, result > upper_tolerance), # Points above the upper tolerance
+ subset(df, result < lower_tolerance) # Points below the lower tolerance
+ )
+
+ # Basic scatter plot of the result against the index
+ plot(result ~ index, data = df,
+ main = "linearity assessment", ylab = method,
+ pch = 16)
+
+ # Draw a line connecting all the points to visualize the trend
+ lines(df$index, df$result, col = "blue") # Blue line connecting points
+
+ # Highlight points that are outside the tolerance range in red
+ points(x = outside_tolerance$index, y = outside_tolerance$result,
+ pch = 16, col = "red")
+
+ # Add a horizontal line at the median value of the result
+ abline(h = result_median, col = "red")
+
+ # Add dashed horizontal lines at the upper and lower tolerance limits
+ abline(h = upper_tolerance, col = "red", lty = 3) # Upper tolerance
+ abline(h = lower_tolerance, col = "red", lty = 3) # Lower tolerance
+}
diff --git a/README.html b/README.html
index 3bb6cbd..c4809fd 100644
--- a/README.html
+++ b/README.html
@@ -596,82 +596,105 @@ body {
}
</style>
+
</head>
<body>
<!-- README.md is generated from README.rmd. Please edit that file -->
-<h1 id="chemcal---calibration-functions-for-analytical-chemistry">chemCal - Calibration functions for analytical chemistry</h1>
+<h1 id="chemcal---calibration-functions-for-analytical-chemistry">chemCal -
+Calibration functions for analytical chemistry</h1>
<!-- badges: start -->
-<p><a href="https://cran.r-project.org/package=chemCal"><img src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgYXJpYS1sYWJlbD0iQ1JBTiAwLjIuMiI+CiAgPGxpbmVhckdyYWRpZW50IGlkPSJiIiB4Mj0iMCIgeTI9IjEwMCUiPgogICAgPHN0b3Agb2Zmc2V0PSIwIiBzdG9wLWNvbG9yPSIjYmJiIiBzdG9wLW9wYWNpdHk9Ii4xIi8+CiAgICA8c3RvcCBvZmZzZXQ9IjEiIHN0b3Atb3BhY2l0eT0iLjEiLz4KICA8L2xpbmVhckdyYWRpZW50PgogIDxtYXNrIGlkPSJhIj4KICAgIDxyZWN0IHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgcng9IjMiIGZpbGw9IiNmZmYiLz4KICA8L21hc2s+CiAgPGcgbWFzaz0idXJsKCNhKSI+CiAgICA8cGF0aCBmaWxsPSIjNTU1IiBkPSJNMCAwaDQzdjIwSDB6Ii8+CiAgICA8cGF0aCBmaWxsPSIjNGMxIiBkPSJNNDMgMGg2M3YyMEg0M3oiLz4KICAgIDxwYXRoIGZpbGw9InVybCgjYikiIGQ9Ik0wIDBoODV2MjBIMHoiLz4KICA8L2c+CiAgPGcgZmlsbD0iI2ZmZiIgdGV4dC1hbmNob3I9Im1pZGRsZSIKICAgICBmb250LWZhbWlseT0iRGVqYVZ1IFNhbnMsVmVyZGFuYSxHZW5ldmEsc2Fucy1zZXJpZiIgZm9udC1zaXplPSIxMSI+CiAgICA8dGV4dCB4PSIyMS41IiB5PSIxNSIgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyI+CiAgICAgIENSQU4KICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjIxLjUiIHk9IjE0Ij4KICAgICAgQ1JBTgogICAgPC90ZXh0PgogICAgPHRleHQgeD0iNjMiIHk9IjE1IiBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgMC4yLjIKICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjYzIiB5PSIxNCI+CiAgICAgIDAuMi4yCiAgICA8L3RleHQ+CiAgPC9nPgo8L3N2Zz4=" /></a> <a href="https://app.travis-ci.com/github/jranke/chemCal"><img src="" alt="Build Status" /></a> <a href="https://codecov.io/github/jranke/chemCal"><img src="" alt="codecov" /></a></p>
+<p><a href="https://cran.r-project.org/package=chemCal"><img src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgYXJpYS1sYWJlbD0iQ1JBTiAwLjIuMyI+CiAgPGxpbmVhckdyYWRpZW50IGlkPSJiIiB4Mj0iMCIgeTI9IjEwMCUiPgogICAgPHN0b3Agb2Zmc2V0PSIwIiBzdG9wLWNvbG9yPSIjYmJiIiBzdG9wLW9wYWNpdHk9Ii4xIi8+CiAgICA8c3RvcCBvZmZzZXQ9IjEiIHN0b3Atb3BhY2l0eT0iLjEiLz4KICA8L2xpbmVhckdyYWRpZW50PgogIDxtYXNrIGlkPSJhIj4KICAgIDxyZWN0IHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgcng9IjMiIGZpbGw9IiNmZmYiLz4KICA8L21hc2s+CiAgPGcgbWFzaz0idXJsKCNhKSI+CiAgICA8cGF0aCBmaWxsPSIjNTU1IiBkPSJNMCAwaDQzdjIwSDB6Ii8+CiAgICA8cGF0aCBmaWxsPSIjNGMxIiBkPSJNNDMgMGg2M3YyMEg0M3oiLz4KICAgIDxwYXRoIGZpbGw9InVybCgjYikiIGQ9Ik0wIDBoODV2MjBIMHoiLz4KICA8L2c+CiAgPGcgZmlsbD0iI2ZmZiIgdGV4dC1hbmNob3I9Im1pZGRsZSIKICAgICBmb250LWZhbWlseT0iRGVqYVZ1IFNhbnMsVmVyZGFuYSxHZW5ldmEsc2Fucy1zZXJpZiIgZm9udC1zaXplPSIxMSI+CiAgICA8dGV4dCB4PSIyMS41IiB5PSIxNSIgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyI+CiAgICAgIENSQU4KICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjIxLjUiIHk9IjE0Ij4KICAgICAgQ1JBTgogICAgPC90ZXh0PgogICAgPHRleHQgeD0iNjMiIHk9IjE1IiBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgMC4yLjMKICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjYzIiB5PSIxNCI+CiAgICAgIDAuMi4zCiAgICA8L3RleHQ+CiAgPC9nPgo8L3N2Zz4=" /></a> <a href="https://app.codecov.io/gh/jranke/chemCal"><img src="" alt="Codecov test coverage" /></a> <a href="https://github.com/jranke/chemCal/actions/workflows/R-CMD-check.yaml"><img src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSIxODIiIGhlaWdodD0iMjAiPgogIDx0aXRsZT5SLUNNRC1jaGVjay55YW1sIC0gcGFzc2luZzwvdGl0bGU+CiAgPGRlZnM+CiAgICA8bGluZWFyR3JhZGllbnQgaWQ9IndvcmtmbG93LWZpbGwiIHgxPSI1MCUiIHkxPSIwJSIgeDI9IjUwJSIgeTI9IjEwMCUiPgogICAgICA8c3RvcCBzdG9wLWNvbG9yPSIjNDQ0RDU2IiBvZmZzZXQ9IjAlIj48L3N0b3A+CiAgICAgIDxzdG9wIHN0b3AtY29sb3I9IiMyNDI5MkUiIG9mZnNldD0iMTAwJSI+PC9zdG9wPgogICAgPC9saW5lYXJHcmFkaWVudD4KICAgIDxsaW5lYXJHcmFkaWVudCBpZD0ic3RhdGUtZmlsbCIgeDE9IjUwJSIgeTE9IjAlIiB4Mj0iNTAlIiB5Mj0iMTAwJSI+CiAgICAgIDxzdG9wIHN0b3AtY29sb3I9IiMzNEQwNTgiIG9mZnNldD0iMCUiPjwvc3RvcD4KICAgICAgPHN0b3Agc3RvcC1jb2xvcj0iIzI4QTc0NSIgb2Zmc2V0PSIxMDAlIj48L3N0b3A+CiAgICA8L2xpbmVhckdyYWRpZW50PgogIDwvZGVmcz4KICA8ZyBmaWxsPSJub25lIiBmaWxsLXJ1bGU9ImV2ZW5vZGQiPgogICAgPGcgZm9udC1mYW1pbHk9IiYjMzk7RGVqYVZ1IFNhbnMmIzM5OyxWZXJkYW5hLEdlbmV2YSxzYW5zLXNlcmlmIiBmb250LXNpemU9IjExIj4KICAgICAgPHBhdGggaWQ9IndvcmtmbG93LWJnIiBkPSJNMCwzIEMwLDEuMzQzMSAxLjM1NTIsMCAzLjAyNzAyNzAzLDAgTDEzMiwwIEwxMzIsMjAgTDMuMDI3MDI3MDMsMjAgQzEuMzU1MiwyMCAwLDE4LjY1NjkgMCwxNyBMMCwzIFoiIGZpbGw9InVybCgjd29ya2Zsb3ctZmlsbCkiIGZpbGwtcnVsZT0ibm9uemVybyI+PC9wYXRoPgogICAgICA8dGV4dCBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgICA8dHNwYW4geD0iMjIuMTk4MTk4MiIgeT0iMTUiIGFyaWEtaGlkZGVuPSJ0cnVlIj5SLUNNRC1jaGVjay55YW1sPC90c3Bhbj4KICAgICAgPC90ZXh0PgogICAgICA8dGV4dCBmaWxsPSIjRkZGRkZGIj4KICAgICAgICA8dHNwYW4geD0iMjIuMTk4MTk4MiIgeT0iMTQiPlItQ01ELWNoZWNrLnlhbWw8L3RzcGFuPgogICAgICA8L3RleHQ+CiAgICA8L2c+CiAgICA8ZyB0cmFuc2Zvcm09InRyYW5zbGF0ZSgxMzIpIiBmb250LWZhbWlseT0iJiMzOTtEZWphVnUgU2FucyYjMzk7LFZlcmRhbmEsR2VuZXZhLHNhbnMtc2VyaWYiIGZvbnQtc2l6ZT0iMTEiPgogICAgICA8cGF0aCBkPSJNMCAwaDQ2LjkzOUM0OC42MjkgMCA1MCAxLjM0MyA1MCAzdjE0YzAgMS42NTctMS4zNyAzLTMuMDYxIDNIMFYweiIgaWQ9InN0YXRlLWJnIiBmaWxsPSJ1cmwoI3N0YXRlLWZpbGwpIiBmaWxsLXJ1bGU9Im5vbnplcm8iPjwvcGF0aD4KICAgICAgPHRleHQgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyIgYXJpYS1oaWRkZW49InRydWUiPgogICAgICAgIDx0c3BhbiB4PSI0IiB5PSIxNSI+cGFzc2luZzwvdHNwYW4+CiAgICAgIDwvdGV4dD4KICAgICAgPHRleHQgZmlsbD0iI0ZGRkZGRiI+CiAgICAgICAgPHRzcGFuIHg9IjQiIHk9IjE0Ij5wYXNzaW5nPC90c3Bhbj4KICAgICAgPC90ZXh0PgogICAgPC9nPgogICAgPHBhdGggZmlsbD0iIzk1OURBNSIgZD0iTTExIDNjLTMuODY4IDAtNyAzLjEzMi03IDdhNi45OTYgNi45OTYgMCAwIDAgNC43ODYgNi42NDFjLjM1LjA2Mi40ODItLjE0OC40ODItLjMzMiAwLS4xNjYtLjAxLS43MTgtLjAxLTEuMzA0LTEuNzU4LjMyNC0yLjIxMy0uNDI5LTIuMzUzLS44MjItLjA3OS0uMjAyLS40Mi0uODIzLS43MTctLjk5LS4yNDUtLjEzLS41OTUtLjQ1NC0uMDEtLjQ2My41NTItLjAwOS45NDYuNTA4IDEuMDc3LjcxOC42MyAxLjA1OCAxLjYzNi43NiAyLjAzOS41NzcuMDYxLS40NTUuMjQ1LS43NjEuNDQ2LS45MzYtMS41NTctLjE3NS0zLjE4NS0uNzc5LTMuMTg1LTMuNDU2IDAtLjc2Mi4yNzEtMS4zOTIuNzE4LTEuODgyLS4wNy0uMTc1LS4zMTUtLjg5Mi4wNy0xLjg1NSAwIDAgLjU4Ni0uMTgzIDEuOTI1LjcxOGE2LjUgNi41IDAgMCAxIDEuNzUtLjIzNiA2LjUgNi41IDAgMCAxIDEuNzUuMjM2YzEuMzM4LS45MSAxLjkyNS0uNzE4IDEuOTI1LS43MTguMzg1Ljk2My4xNCAxLjY4LjA3IDEuODU1LjQ0Ni40OS43MTcgMS4xMTIuNzE3IDEuODgyIDAgMi42ODYtMS42MzYgMy4yOC0zLjE5NCAzLjQ1Ni4yNTQuMjE5LjQ3My42MzkuNDczIDEuMjk1IDAgLjkzNi0uMDA5IDEuNjg5LS4wMDkgMS45MjUgMCAuMTg0LjEzMS40MDIuNDgxLjMzMkE3LjAxMSA3LjAxMSAwIDAgMCAxOCAxMGMwLTMuODY3LTMuMTMzLTctNy03eiI+PC9wYXRoPgogIDwvZz4KPC9zdmc+Cgo=" alt="R-CMD-check" /></a></p>
<!-- badges: end -->
<h2 id="overview">Overview</h2>
-<p>chemCal is an R package providing some basic functions for conveniently working with linear calibration curves with one explanatory variable.</p>
+<p>chemCal is an R package providing some basic functions for
+conveniently working with linear calibration curves with one explanatory
+variable.</p>
<h2 id="installation">Installation</h2>
-<p>From within <a href="https://www.r-project.org/">R</a>, get the official chemCal release using</p>
-<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true"></a><span class="kw">install.packages</span>(<span class="st">&quot;chemCal&quot;</span>)</span></code></pre></div>
+<p>From within <a href="https://www.r-project.org/">R</a>, get the
+official chemCal release using</p>
+<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">&quot;chemCal&quot;</span>)</span></code></pre></div>
<h2 id="usage">Usage</h2>
-<p>chemCal works with univariate linear models of class <code>lm</code>. Working with one of the datasets coming with chemCal, we can produce a calibration plot using the <code>calplot</code> function:</p>
+<p>chemCal works with univariate linear models of class <code>lm</code>.
+Working with one of the datasets coming with chemCal, we can produce a
+calibration plot using the <code>calplot</code> function:</p>
<h3 id="plotting-a-calibration">Plotting a calibration</h3>
-<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true"></a><span class="kw">library</span>(chemCal)</span>
-<span id="cb2-2"><a href="#cb2-2" aria-hidden="true"></a>m0 &lt;-<span class="st"> </span><span class="kw">lm</span>(y <span class="op">~</span><span class="st"> </span>x, <span class="dt">data =</span> massart97ex3)</span>
-<span id="cb2-3"><a href="#cb2-3" aria-hidden="true"></a><span class="kw">calplot</span>(m0)</span></code></pre></div>
+<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(chemCal)</span>
+<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>m0 <span class="ot">&lt;-</span> <span class="fu">lm</span>(y <span class="sc">~</span> x, <span class="at">data =</span> massart97ex3)</span>
+<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="fu">calplot</span>(m0)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<h3 id="lod-and-loq">LOD and LOQ</h3>
-<p>If you use unweighted regression, as in the above example, we can calculate a Limit Of Detection (LOD) from the calibration data.</p>
-<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true"></a><span class="kw">lod</span>(m0)</span>
-<span id="cb3-2"><a href="#cb3-2" aria-hidden="true"></a><span class="co">#&gt; $x</span></span>
-<span id="cb3-3"><a href="#cb3-3" aria-hidden="true"></a><span class="co">#&gt; [1] 5.407085</span></span>
-<span id="cb3-4"><a href="#cb3-4" aria-hidden="true"></a><span class="co">#&gt; </span></span>
-<span id="cb3-5"><a href="#cb3-5" aria-hidden="true"></a><span class="co">#&gt; $y</span></span>
-<span id="cb3-6"><a href="#cb3-6" aria-hidden="true"></a><span class="co">#&gt; [1] 13.63911</span></span></code></pre></div>
-<p>This is the minimum detectable value (German: Erfassungsgrenze), i.e. the value where the probability that the signal is not detected although the analyte is present is below a specified error tolerance beta (default is 0.05 following the IUPAC recommendation).</p>
-<p>You can also calculate the decision limit (German: Nachweisgrenze), i.e. the value that is significantly different from the blank signal with an error tolerance alpha (default is 0.05, again following IUPAC recommendations) by setting beta to 0.5.</p>
-<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true"></a><span class="kw">lod</span>(m0, <span class="dt">beta =</span> <span class="fl">0.5</span>)</span>
-<span id="cb4-2"><a href="#cb4-2" aria-hidden="true"></a><span class="co">#&gt; $x</span></span>
-<span id="cb4-3"><a href="#cb4-3" aria-hidden="true"></a><span class="co">#&gt; [1] 2.720388</span></span>
-<span id="cb4-4"><a href="#cb4-4" aria-hidden="true"></a><span class="co">#&gt; </span></span>
-<span id="cb4-5"><a href="#cb4-5" aria-hidden="true"></a><span class="co">#&gt; $y</span></span>
-<span id="cb4-6"><a href="#cb4-6" aria-hidden="true"></a><span class="co">#&gt; [1] 8.314841</span></span></code></pre></div>
-<p>Furthermore, you can calculate the Limit Of Quantification (LOQ), being defined as the value where the relative error of the quantification given the calibration model reaches a prespecified value (default is 1/3).</p>
-<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true"></a><span class="kw">loq</span>(m0)</span>
-<span id="cb5-2"><a href="#cb5-2" aria-hidden="true"></a><span class="co">#&gt; $x</span></span>
-<span id="cb5-3"><a href="#cb5-3" aria-hidden="true"></a><span class="co">#&gt; [1] 9.627349</span></span>
-<span id="cb5-4"><a href="#cb5-4" aria-hidden="true"></a><span class="co">#&gt; </span></span>
-<span id="cb5-5"><a href="#cb5-5" aria-hidden="true"></a><span class="co">#&gt; $y</span></span>
-<span id="cb5-6"><a href="#cb5-6" aria-hidden="true"></a><span class="co">#&gt; [1] 22.00246</span></span></code></pre></div>
-<h3 id="confidence-intervals-for-measured-values">Confidence intervals for measured values</h3>
-<p>Finally, you can get a confidence interval for the values measured using the calibration curve, i.e. for the inverse predictions using the function <code>inverse.predict</code>.</p>
-<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true"></a><span class="kw">inverse.predict</span>(m0, <span class="dv">90</span>)</span>
-<span id="cb6-2"><a href="#cb6-2" aria-hidden="true"></a><span class="co">#&gt; $Prediction</span></span>
-<span id="cb6-3"><a href="#cb6-3" aria-hidden="true"></a><span class="co">#&gt; [1] 43.93983</span></span>
-<span id="cb6-4"><a href="#cb6-4" aria-hidden="true"></a><span class="co">#&gt; </span></span>
-<span id="cb6-5"><a href="#cb6-5" aria-hidden="true"></a><span class="co">#&gt; $`Standard Error`</span></span>
-<span id="cb6-6"><a href="#cb6-6" aria-hidden="true"></a><span class="co">#&gt; [1] 1.576985</span></span>
-<span id="cb6-7"><a href="#cb6-7" aria-hidden="true"></a><span class="co">#&gt; </span></span>
-<span id="cb6-8"><a href="#cb6-8" aria-hidden="true"></a><span class="co">#&gt; $Confidence</span></span>
-<span id="cb6-9"><a href="#cb6-9" aria-hidden="true"></a><span class="co">#&gt; [1] 3.230307</span></span>
-<span id="cb6-10"><a href="#cb6-10" aria-hidden="true"></a><span class="co">#&gt; </span></span>
-<span id="cb6-11"><a href="#cb6-11" aria-hidden="true"></a><span class="co">#&gt; $`Confidence Limits`</span></span>
-<span id="cb6-12"><a href="#cb6-12" aria-hidden="true"></a><span class="co">#&gt; [1] 40.70952 47.17014</span></span></code></pre></div>
-<p>If you have replicate measurements of the same sample, you can also give a vector of numbers.</p>
-<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true"></a><span class="kw">inverse.predict</span>(m0, <span class="kw">c</span>(<span class="dv">91</span>, <span class="dv">89</span>, <span class="dv">87</span>, <span class="dv">93</span>, <span class="dv">90</span>))</span>
-<span id="cb7-2"><a href="#cb7-2" aria-hidden="true"></a><span class="co">#&gt; $Prediction</span></span>
-<span id="cb7-3"><a href="#cb7-3" aria-hidden="true"></a><span class="co">#&gt; [1] 43.93983</span></span>
-<span id="cb7-4"><a href="#cb7-4" aria-hidden="true"></a><span class="co">#&gt; </span></span>
-<span id="cb7-5"><a href="#cb7-5" aria-hidden="true"></a><span class="co">#&gt; $`Standard Error`</span></span>
-<span id="cb7-6"><a href="#cb7-6" aria-hidden="true"></a><span class="co">#&gt; [1] 0.796884</span></span>
-<span id="cb7-7"><a href="#cb7-7" aria-hidden="true"></a><span class="co">#&gt; </span></span>
-<span id="cb7-8"><a href="#cb7-8" aria-hidden="true"></a><span class="co">#&gt; $Confidence</span></span>
-<span id="cb7-9"><a href="#cb7-9" aria-hidden="true"></a><span class="co">#&gt; [1] 1.632343</span></span>
-<span id="cb7-10"><a href="#cb7-10" aria-hidden="true"></a><span class="co">#&gt; </span></span>
-<span id="cb7-11"><a href="#cb7-11" aria-hidden="true"></a><span class="co">#&gt; $`Confidence Limits`</span></span>
-<span id="cb7-12"><a href="#cb7-12" aria-hidden="true"></a><span class="co">#&gt; [1] 42.30749 45.57217</span></span></code></pre></div>
+<p>If you use unweighted regression, as in the above example, we can
+calculate a Limit Of Detection (LOD) from the calibration data.</p>
+<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">lod</span>(m0)</span>
+<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $x</span></span>
+<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 5.407085</span></span>
+<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
+<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $y</span></span>
+<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 13.63911</span></span></code></pre></div>
+<p>This is the minimum detectable value (German: Erfassungsgrenze),
+i.e. the value where the probability that the signal is not detected
+although the analyte is present is below a specified error tolerance
+beta (default is 0.05 following the IUPAC recommendation).</p>
+<p>You can also calculate the decision limit (German: Nachweisgrenze),
+i.e. the value that is significantly different from the blank signal
+with an error tolerance alpha (default is 0.05, again following IUPAC
+recommendations) by setting beta to 0.5.</p>
+<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">lod</span>(m0, <span class="at">beta =</span> <span class="fl">0.5</span>)</span>
+<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $x</span></span>
+<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 2.720388</span></span>
+<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
+<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $y</span></span>
+<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 8.314841</span></span></code></pre></div>
+<p>Furthermore, you can calculate the Limit Of Quantification (LOQ),
+being defined as the value where the relative error of the
+quantification given the calibration model reaches a prespecified value
+(default is 1/3).</p>
+<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">loq</span>(m0)</span>
+<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $x</span></span>
+<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 9.627349</span></span>
+<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
+<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $y</span></span>
+<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 22.00246</span></span></code></pre></div>
+<h3 id="confidence-intervals-for-measured-values">Confidence intervals
+for measured values</h3>
+<p>Finally, you can get a confidence interval for the values measured
+using the calibration curve, i.e. for the inverse predictions using the
+function <code>inverse.predict</code>.</p>
+<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">inverse.predict</span>(m0, <span class="dv">90</span>)</span>
+<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $Prediction</span></span>
+<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 43.93983</span></span>
+<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
+<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $`Standard Error`</span></span>
+<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 1.576985</span></span>
+<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
+<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $Confidence</span></span>
+<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 3.230307</span></span>
+<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
+<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $`Confidence Limits`</span></span>
+<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 40.70952 47.17014</span></span></code></pre></div>
+<p>If you have replicate measurements of the same sample, you can also
+give a vector of numbers.</p>
+<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">inverse.predict</span>(m0, <span class="fu">c</span>(<span class="dv">91</span>, <span class="dv">89</span>, <span class="dv">87</span>, <span class="dv">93</span>, <span class="dv">90</span>))</span>
+<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $Prediction</span></span>
+<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 43.93983</span></span>
+<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
+<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $`Standard Error`</span></span>
+<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 0.796884</span></span>
+<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
+<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $Confidence</span></span>
+<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 1.632343</span></span>
+<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; </span></span>
+<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; $`Confidence Limits`</span></span>
+<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a><span class="co">#&gt; [1] 42.30749 45.57217</span></span></code></pre></div>
<h2 id="reference">Reference</h2>
-<p>You can use the R help system to view documentation, or you can have a look at the <a href="https://pkgdown.jrwb.de/chemCal/">online documentation</a>.</p>
+<p>You can use the R help system to view documentation, or you can have
+a look at the <a href="https://pkgdown.jrwb.de/chemCal/">online
+documentation</a>.</p>
</body>
</html>
diff --git a/README.md b/README.md
index b7b4db6..ee2568b 100644
--- a/README.md
+++ b/README.md
@@ -10,8 +10,8 @@ output: github_document
<!-- badges: start -->
[![](https://www.r-pkg.org/badges/version/chemCal)](https://cran.r-project.org/package=chemCal)
-[![Build Status](https://travis-ci.com/jranke/chemCal.svg?branch=master)](https://app.travis-ci.com/github/jranke/chemCal)
-[![codecov](https://codecov.io/github/jranke/chemCal/branch/master/graphs/badge.svg)](https://codecov.io/github/jranke/chemCal)
+[![Codecov test coverage](https://codecov.io/gh/jranke/chemCal/graph/badge.svg)](https://app.codecov.io/gh/jranke/chemCal)
+[![R-CMD-check](https://github.com/jranke/chemCal/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/jranke/chemCal/actions/workflows/R-CMD-check.yaml)
<!-- badges: end -->
## Overview
@@ -24,7 +24,7 @@ with linear calibration curves with one explanatory variable.
From within [R][r-project], get the official chemCal release using
-```r
+``` r
install.packages("chemCal")
```
@@ -37,7 +37,7 @@ the datasets coming with chemCal, we can produce a calibration plot using the
### Plotting a calibration
-```r
+``` r
library(chemCal)
m0 <- lm(y ~ x, data = massart97ex3)
calplot(m0)
@@ -51,7 +51,7 @@ If you use unweighted regression, as in the above example, we can calculate a
Limit Of Detection (LOD) from the calibration data.
-```r
+``` r
lod(m0)
#> $x
#> [1] 5.407085
@@ -70,7 +70,7 @@ with an error tolerance alpha (default is 0.05, again following
IUPAC recommendations) by setting beta to 0.5.
-```r
+``` r
lod(m0, beta = 0.5)
#> $x
#> [1] 2.720388
@@ -84,7 +84,7 @@ defined as the value where the relative error of the quantification given the
calibration model reaches a prespecified value (default is 1/3).
-```r
+``` r
loq(m0)
#> $x
#> [1] 9.627349
@@ -100,7 +100,7 @@ measured using the calibration curve, i.e. for the inverse
predictions using the function `inverse.predict`.
-```r
+``` r
inverse.predict(m0, 90)
#> $Prediction
#> [1] 43.93983
@@ -119,7 +119,7 @@ If you have replicate measurements of the same sample,
you can also give a vector of numbers.
-```r
+``` r
inverse.predict(m0, c(91, 89, 87, 93, 90))
#> $Prediction
#> [1] 43.93983
diff --git a/README.rmd b/README.rmd
index 361b4c0..b0af5a4 100644
--- a/README.rmd
+++ b/README.rmd
@@ -16,8 +16,8 @@ knitr::opts_chunk$set(
<!-- badges: start -->
[![](https://www.r-pkg.org/badges/version/chemCal)](https://cran.r-project.org/package=chemCal)
-[![Build Status](https://travis-ci.com/jranke/chemCal.svg?branch=master)](https://app.travis-ci.com/github/jranke/chemCal)
-[![codecov](https://codecov.io/github/jranke/chemCal/branch/master/graphs/badge.svg)](https://codecov.io/github/jranke/chemCal)
+[![Codecov test coverage](https://codecov.io/gh/jranke/chemCal/graph/badge.svg)](https://app.codecov.io/gh/jranke/chemCal)
+[![R-CMD-check](https://github.com/jranke/chemCal/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/jranke/chemCal/actions/workflows/R-CMD-check.yaml)
<!-- badges: end -->
## Overview
diff --git a/build.log b/build.log
index 2fe8e6c..14f0a29 100644
--- a/build.log
+++ b/build.log
@@ -6,5 +6,5 @@
* checking for LF line-endings in source and make files and shell scripts
* checking for empty or unneeded directories
* re-saving image files
-* building ‘chemCal_0.2.3.tar.gz’
+* building ‘chemCal_0.2.3.9000.tar.gz’
diff --git a/check.log b/check.log
index 60e9e39..fdc71ef 100644
--- a/check.log
+++ b/check.log
@@ -1,18 +1,19 @@
* using log directory ‘/home/jranke/git/chemCal/chemCal.Rcheck’
-* using R version 4.1.3 (2022-03-10)
-* using platform: x86_64-pc-linux-gnu (64-bit)
+* using R version 4.4.2 (2024-10-31)
+* using platform: x86_64-pc-linux-gnu
+* R was compiled by
+ gcc (Debian 12.2.0-14) 12.2.0
+ GNU Fortran (Debian 12.2.0-14) 12.2.0
+* running under: Debian GNU/Linux 12 (bookworm)
* using session charset: UTF-8
* using option ‘--as-cran’
* checking for file ‘chemCal/DESCRIPTION’ ... OK
-* this is package ‘chemCal’ version ‘0.2.3’
+* this is package ‘chemCal’ version ‘0.2.3.9000’
* package encoding: UTF-8
-* checking CRAN incoming feasibility ... NOTE
+* checking CRAN incoming feasibility ... [3s/15s] NOTE
Maintainer: ‘Johannes Ranke <johannes.ranke@jrwb.de>’
-New maintainer:
- Johannes Ranke <johannes.ranke@jrwb.de>
-Old maintainer(s):
- Johannes Ranke <jranke@uni-bremen.de>
+Version contains large components (0.2.3.9000)
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
@@ -21,18 +22,18 @@ Old maintainer(s):
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
-* checking serialization versions ... OK
* checking whether package ‘chemCal’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
-* checking for future file timestamps ... OK
+* checking for future file timestamps ... NOTE
+unable to verify current time
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
-* checking R files for non-ASCII characters ... OK
+* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
@@ -67,16 +68,16 @@ Old maintainer(s):
Running ‘testthat.R’
OK
* checking for unstated dependencies in vignettes ... OK
-* checking package vignettes in ‘inst/doc’ ... OK
+* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
+* checking HTML version of manual ... OK
* checking for non-standard things in the check directory ... OK
* checking for detritus in the temp directory ... OK
* DONE
-Status: 1 NOTE
+Status: 2 NOTEs
See
‘/home/jranke/git/chemCal/chemCal.Rcheck/00check.log’
for details.
-
diff --git a/codecov.yml b/codecov.yml
new file mode 100644
index 0000000..04c5585
--- /dev/null
+++ b/codecov.yml
@@ -0,0 +1,14 @@
+comment: false
+
+coverage:
+ status:
+ project:
+ default:
+ target: auto
+ threshold: 1%
+ informational: true
+ patch:
+ default:
+ target: auto
+ threshold: 1%
+ informational: true
diff --git a/data/din38402b1.rda b/data/din38402b1.rda
new file mode 100644
index 0000000..ccaf554
--- /dev/null
+++ b/data/din38402b1.rda
Binary files differ
diff --git a/data/din38402b3.rda b/data/din38402b3.rda
new file mode 100644
index 0000000..80e80e3
--- /dev/null
+++ b/data/din38402b3.rda
Binary files differ
diff --git a/data/din38402b6.rda b/data/din38402b6.rda
new file mode 100644
index 0000000..def8f0e
--- /dev/null
+++ b/data/din38402b6.rda
Binary files differ
diff --git a/data/din38402c3.rda b/data/din38402c3.rda
new file mode 100644
index 0000000..c4688ef
--- /dev/null
+++ b/data/din38402c3.rda
Binary files differ
diff --git a/docs/404.html b/docs/404.html
index 9ea600b..b2a614e 100644
--- a/docs/404.html
+++ b/docs/404.html
@@ -32,7 +32,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
diff --git a/docs/articles/chemCal.html b/docs/articles/chemCal.html
index bbcc568..c3b1d44 100644
--- a/docs/articles/chemCal.html
+++ b/docs/articles/chemCal.html
@@ -33,7 +33,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
@@ -72,7 +72,7 @@
<h1 data-toc-skip>Introduction to chemCal</h1>
<h4 data-toc-skip class="author">Johannes Ranke</h4>
- <h4 data-toc-skip class="date">2022-03-31</h4>
+ <h4 data-toc-skip class="date">2022-04-01</h4>
<small class="dont-index">Source: <a href="https://github.com/jranke/chemCal/blob/HEAD/vignettes/chemCal.Rmd" class="external-link"><code>vignettes/chemCal.Rmd</code></a></small>
<div class="hidden name"><code>chemCal.Rmd</code></div>
diff --git a/docs/articles/index.html b/docs/articles/index.html
index 3e53fde..c9280ff 100644
--- a/docs/articles/index.html
+++ b/docs/articles/index.html
@@ -17,7 +17,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
diff --git a/docs/authors.html b/docs/authors.html
index 694eb5b..cad37a1 100644
--- a/docs/authors.html
+++ b/docs/authors.html
@@ -17,7 +17,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
diff --git a/docs/index.html b/docs/index.html
index 7882a73..7701233 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -39,7 +39,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
diff --git a/docs/news/index.html b/docs/news/index.html
index f422331..abecdea 100644
--- a/docs/news/index.html
+++ b/docs/news/index.html
@@ -17,7 +17,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml
index 3c1d018..94a8afe 100644
--- a/docs/pkgdown.yml
+++ b/docs/pkgdown.yml
@@ -3,5 +3,5 @@ pkgdown: 2.0.2
pkgdown_sha: ~
articles:
chemCal: chemCal.html
-last_built: 2022-03-31T17:56Z
+last_built: 2022-04-01T12:31Z
diff --git a/docs/reference/calplot.html b/docs/reference/calplot.html
index 88321b1..9702378 100644
--- a/docs/reference/calplot.html
+++ b/docs/reference/calplot.html
@@ -18,7 +18,7 @@ confidence, and, for unweighted regression, prediction bands."><!-- mathjax --><
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
diff --git a/docs/reference/din32645.html b/docs/reference/din32645.html
index ba6246a..617741a 100644
--- a/docs/reference/din32645.html
+++ b/docs/reference/din32645.html
@@ -17,7 +17,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
diff --git a/docs/reference/index.html b/docs/reference/index.html
index 9812256..3d53d28 100644
--- a/docs/reference/index.html
+++ b/docs/reference/index.html
@@ -17,7 +17,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
diff --git a/docs/reference/inverse.predict.html b/docs/reference/inverse.predict.html
index 6fe081e..1207ab5 100644
--- a/docs/reference/inverse.predict.html
+++ b/docs/reference/inverse.predict.html
@@ -26,7 +26,7 @@ This is elaborated in the package vignette."><!-- mathjax --><script src="https:
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
diff --git a/docs/reference/lod.html b/docs/reference/lod.html
index 1fbae76..94e7bdc 100644
--- a/docs/reference/lod.html
+++ b/docs/reference/lod.html
@@ -24,7 +24,7 @@ significance test)."><!-- mathjax --><script src="https://cdnjs.cloudflare.com/a
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
@@ -110,14 +110,15 @@ limit of detection of a model used for calibration.</p>
</div>
<div id="note">
<h2>Note</h2>
- <p>* The default values for alpha and beta are the ones recommended by IUPAC.
-* The estimation of the LOD in terms of the analyte amount/concentration xD
+
+<ul><li><p>The default values for alpha and beta are the ones recommended by IUPAC.</p></li>
+<li><p>The estimation of the LOD in terms of the analyte amount/concentration xD
from the LOD in the signal domain SD is done by simply inverting the
-calibration function (i.e. assuming a known calibration function).
-* The calculation of a LOD from weighted calibration models requires a
+calibration function (i.e. assuming a known calibration function).</p></li>
+<li><p>The calculation of a LOD from weighted calibration models requires a
weights argument for the internally used <code><a href="https://rdrr.io/r/stats/predict.lm.html" class="external-link">predict.lm</a></code>
-function, which is currently not supported in R.</p>
- </div>
+function, which is currently not supported in R.</p></li>
+</ul></div>
<div id="references">
<h2>References</h2>
<p>Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong,
diff --git a/docs/reference/loq.html b/docs/reference/loq.html
index 86c8f43..cfe87cc 100644
--- a/docs/reference/loq.html
+++ b/docs/reference/loq.html
@@ -22,7 +22,7 @@ inverse.predict, and L is obtained by iteration."><!-- mathjax --><script src="h
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
@@ -117,11 +117,12 @@ calibration.</p>
</div>
<div id="note">
<h2>Note</h2>
- <p>* IUPAC recommends to base the LOQ on the standard deviation of the
-signal where x = 0.
-* The calculation of a LOQ based on weighted regression is non-standard and
-therefore not tested. Feedback is welcome.</p>
- </div>
+
+<ul><li><p>IUPAC recommends to base the LOQ on the standard deviation of the
+signal where x = 0.</p></li>
+<li><p>The calculation of a LOQ based on weighted regression is non-standard and
+therefore not tested. Feedback is welcome.</p></li>
+</ul></div>
<div id="see-also">
<h2>See also</h2>
<div class="dont-index"><p>Examples for <code><a href="din32645.html">din32645</a></code></p></div>
diff --git a/docs/reference/massart97ex1.html b/docs/reference/massart97ex1.html
index a02dfe0..952297a 100644
--- a/docs/reference/massart97ex1.html
+++ b/docs/reference/massart97ex1.html
@@ -17,7 +17,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
diff --git a/docs/reference/massart97ex3.html b/docs/reference/massart97ex3.html
index 5cbdbd6..44f3b64 100644
--- a/docs/reference/massart97ex3.html
+++ b/docs/reference/massart97ex3.html
@@ -17,7 +17,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
diff --git a/docs/reference/rl95_cadmium.html b/docs/reference/rl95_cadmium.html
index 4ddb8e4..c56f64b 100644
--- a/docs/reference/rl95_cadmium.html
+++ b/docs/reference/rl95_cadmium.html
@@ -19,7 +19,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
diff --git a/docs/reference/rl95_toluene.html b/docs/reference/rl95_toluene.html
index 4c8c7d2..0419b49 100644
--- a/docs/reference/rl95_toluene.html
+++ b/docs/reference/rl95_toluene.html
@@ -19,7 +19,7 @@ Presumably this is the volume that was injected into the instrument."><!-- mathj
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
diff --git a/docs/reference/utstats14.html b/docs/reference/utstats14.html
index 1ffc224..2ea31bf 100644
--- a/docs/reference/utstats14.html
+++ b/docs/reference/utstats14.html
@@ -18,7 +18,7 @@ https://sites.chem.utoronto.ca/chemistry/coursenotes/analsci/stats/files/example
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
- <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3</span>
+ <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
</span>
</div>
diff --git a/man/din32645.Rd b/man/din32645.Rd
index a8e6a31..5b9603f 100644
--- a/man/din32645.Rd
+++ b/man/din32645.Rd
@@ -7,6 +7,9 @@
\format{
A dataframe containing 10 rows of x and y values.
}
+\usage{
+din32645
+}
\description{
Sample dataset to test the package.
}
diff --git a/man/din38402b1.Rd b/man/din38402b1.Rd
new file mode 100644
index 0000000..2c538b8
--- /dev/null
+++ b/man/din38402b1.Rd
@@ -0,0 +1,23 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/chemCal-package.R
+\docType{data}
+\name{din38402b1}
+\alias{din38402b1}
+\title{Nitrite calibration data}
+\format{
+A tibble containing 12 concentration levels with the respective
+instrument response values.
+}
+\usage{
+din38402b1
+}
+\description{
+Example dataset B.1 from DIN 38402 with concentrations in µg/L and the extinction
+as response measured using continuous flow analysis (CFA) according to
+ISO 13395.
+}
+\references{
+DIN 38402-51:2017-05, Beuth Verlag, Berlin.
+https://dx.doi.org/10.31030/2657448
+}
+\keyword{datasets}
diff --git a/man/din38402b3.Rd b/man/din38402b3.Rd
new file mode 100644
index 0000000..83abd0f
--- /dev/null
+++ b/man/din38402b3.Rd
@@ -0,0 +1,24 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/chemCal-package.R
+\docType{data}
+\name{din38402b3}
+\alias{din38402b3}
+\title{Copper calibration data}
+\format{
+A tibble containing 13 concentration levels and the respective
+instrument response values.
+}
+\usage{
+din38402b3
+}
+\description{
+Example dataset B.3 from DIN 38402. Cu was measured according to ISO 11885,
+using ICP-OES. The concentration are reported in mg/L and the response as
+counts/s, describing the count of photons that are detected by the
+photomultiplier detector of the device.
+}
+\references{
+DIN 38402-51:2017-05, Beuth Verlag, Berlin.
+https://dx.doi.org/10.31030/2657448
+}
+\keyword{datasets}
diff --git a/man/din38402b6.Rd b/man/din38402b6.Rd
new file mode 100644
index 0000000..289ee41
--- /dev/null
+++ b/man/din38402b6.Rd
@@ -0,0 +1,23 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/chemCal-package.R
+\docType{data}
+\name{din38402b6}
+\alias{din38402b6}
+\title{Carbamazepin calibration data}
+\format{
+A tibble containing 12 concentration levels and the respective
+instrument response values.
+}
+\usage{
+din38402b6
+}
+\description{
+Example dataset B.6 from DIN 38402 measured using LC-MS/MS. The
+concentrations are reported in in µg/L and the response in arbitrary
+units (AU).
+}
+\references{
+DIN 38402-51:2017-05, Beuth Verlag, Berlin.
+https://dx.doi.org/10.31030/2657448
+}
+\keyword{datasets}
diff --git a/man/din38402c3.Rd b/man/din38402c3.Rd
new file mode 100644
index 0000000..e9ac83e
--- /dev/null
+++ b/man/din38402c3.Rd
@@ -0,0 +1,22 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/chemCal-package.R
+\docType{data}
+\name{din38402c3}
+\alias{din38402c3}
+\title{Iron calibration data}
+\format{
+A tibble containing 10 concentration levels and the respective
+response values.
+}
+\usage{
+din38402c3
+}
+\description{
+Example dataset C.3 from DIN 38402 determined by ion chromatography.
+Concentrations are reported in mg/L and the extinction as response.
+}
+\references{
+DIN 38402-51:2017-05, Beuth Verlag, Berlin.
+https://dx.doi.org/10.31030/2657448
+}
+\keyword{datasets}
diff --git a/man/linearity.Rd b/man/linearity.Rd
new file mode 100644
index 0000000..52c2423
--- /dev/null
+++ b/man/linearity.Rd
@@ -0,0 +1,64 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/linearity.R
+\name{linearity}
+\alias{linearity}
+\title{Assess the linearity of a calibration curve}
+\usage{
+linearity(x, y, method = c("slope", "curvature"), tolerance = 0.1)
+}
+\arguments{
+\item{x}{numeric vector of independent values (usually concentrations).}
+
+\item{y}{numeric vector of dependent values (usually the signal of the
+analytical device).}
+
+\item{method}{character string. Supported methods are "slope" and
+"curvature".}
+
+\item{tolerance}{numeric value between 0 and 1, describing the acceptable
+deviation from the median of the slopes or the signal-to-concentration
+ratio. The default tolerance is 10\%.}
+}
+\value{
+returns a diagnostic plot
+}
+\description{
+A function to create diagnostic plots for the assessment of the linearity of
+calibration data based on their point-to-point slope or the curvature.
+The underlying methods follow ISO 84 66-1:2021 and DIN 32 402-51:2017
+(German Industrial Norm).
+}
+\details{
+The point-to-point slope method is based on the assumption that the slope
+between two points should not vary greatly within the linear range.
+
+The curvature method is similar to the point-to-point slope method. Here,
+the ratio between the instrument signal and the concentration of the
+calibration standard is assumed not to vary greatly within the linear range.
+
+The use of the Mandel test is discouraged due to its limitations in the
+identification of non-linear behaviour of calibration curves (Andrade and
+Gomes-Carracedo, 2013).
+}
+\examples{
+# Continuous Flow Analysis (CFA) data
+data(din38402b1)
+
+# Point-to-point slope plot
+linearity(din38402b1$conc, din38402b1$ext, method = "slope")
+
+# Curvature plot
+linearity(din38402b1$conc, din38402b1$ext, method = "curvature")
+
+}
+\references{
+ISO 8466-1:2021. Water quality — Calibration and evaluation of
+analytical methods — Part 1: Linear calibration function
+
+J. M. Andrade and M. P. Gomez-Carracedo (2013) Notes on the use of
+Mandel's test to check for nonlinearity in laboratory calibrations.
+Analytical Methods 5(5), 1145 - 1149.
+}
+\author{
+Anıl Axel Tellbüscher
+}
diff --git a/man/lod.Rd b/man/lod.Rd
index 05107f3..65b9acc 100644
--- a/man/lod.Rd
+++ b/man/lod.Rd
@@ -52,14 +52,16 @@ is present (type II or false negative error), is beta (also a one-sided
significance test).
}
\note{
-* The default values for alpha and beta are the ones recommended by IUPAC.
-* The estimation of the LOD in terms of the analyte amount/concentration xD
+\itemize{
+\item The default values for alpha and beta are the ones recommended by IUPAC.
+\item The estimation of the LOD in terms of the analyte amount/concentration xD
from the LOD in the signal domain SD is done by simply inverting the
calibration function (i.e. assuming a known calibration function).
-* The calculation of a LOD from weighted calibration models requires a
+\item The calculation of a LOD from weighted calibration models requires a
weights argument for the internally used \code{\link{predict.lm}}
function, which is currently not supported in R.
}
+}
\examples{
m <- lm(y ~ x, data = din32645)
diff --git a/man/loq.Rd b/man/loq.Rd
index 390d3a8..d55131f 100644
--- a/man/loq.Rd
+++ b/man/loq.Rd
@@ -61,11 +61,13 @@ where c(L) is half of the length of the confidence interval at the limit L
\code{\link{inverse.predict}}, and L is obtained by iteration.
}
\note{
-* IUPAC recommends to base the LOQ on the standard deviation of the
+\itemize{
+\item IUPAC recommends to base the LOQ on the standard deviation of the
signal where x = 0.
-* The calculation of a LOQ based on weighted regression is non-standard and
+\item The calculation of a LOQ based on weighted regression is non-standard and
therefore not tested. Feedback is welcome.
}
+}
\examples{
m <- lm(y ~ x, data = massart97ex1)
diff --git a/man/massart97ex1.Rd b/man/massart97ex1.Rd
index d154a9c..c49f416 100644
--- a/man/massart97ex1.Rd
+++ b/man/massart97ex1.Rd
@@ -12,6 +12,9 @@ Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S.,
Lewi, P.J., Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and
Qualimetrics: Part A, Chapter 8.
}
+\usage{
+massart97ex1
+}
\description{
Sample dataset from p. 175 to test the package.
}
diff --git a/man/massart97ex3.Rd b/man/massart97ex3.Rd
index 284a435..82d3191 100644
--- a/man/massart97ex3.Rd
+++ b/man/massart97ex3.Rd
@@ -13,6 +13,9 @@ Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S.,
Lewi, P.J., Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and
Qualimetrics: Part A, Chapter 8.
}
+\usage{
+massart97ex3
+}
\description{
Sample dataset from p. 188 to test the package.
}
diff --git a/man/rl95_cadmium.Rd b/man/rl95_cadmium.Rd
index 8e0b02c..db6a841 100644
--- a/man/rl95_cadmium.Rd
+++ b/man/rl95_cadmium.Rd
@@ -13,6 +13,9 @@ six calibration standards.
Rocke, David M. und Lorenzato, Stefan (1995) A two-component model
for measurement error in analytical chemistry. Technometrics 37(2), 176-184.
}
+\usage{
+rl95_cadmium
+}
\description{
Dataset reproduced from Table 1 in Rocke and Lorenzato (1995).
}
diff --git a/man/rl95_toluene.Rd b/man/rl95_toluene.Rd
index 1f8836a..2e0f3a5 100644
--- a/man/rl95_toluene.Rd
+++ b/man/rl95_toluene.Rd
@@ -12,6 +12,9 @@ six calibration standards.
Rocke, David M. und Lorenzato, Stefan (1995) A two-component model
for measurement error in analytical chemistry. Technometrics 37(2), 176-184.
}
+\usage{
+rl95_toluene
+}
\description{
Dataset reproduced from Table 4 in Rocke and Lorenzato (1995). The toluene
amount in the calibration samples is given in picograms per 100 µL.
diff --git a/man/utstats14.Rd b/man/utstats14.Rd
index 1b739d4..bb952ff 100644
--- a/man/utstats14.Rd
+++ b/man/utstats14.Rd
@@ -14,6 +14,9 @@ Tutorial website maintained by the Departments of Chemistry, University of
Toronto.
\url{https://sites.chem.utoronto.ca/chemistry/coursenotes/analsci/stats/index.html}
}
+\usage{
+utstats14
+}
\description{
Dataset read into R from
\url{https://sites.chem.utoronto.ca/chemistry/coursenotes/analsci/stats/files/example14.xls}.

Contact - Imprint