1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
#' Calibration data from DIN 32645
#'
#' Sample dataset to test the package.
#'
#'
#' @name din32645
#' @docType data
#' @format A dataframe containing 10 rows of x and y values.
#' @references DIN 32645 (equivalent to ISO 11843), Beuth Verlag, Berlin, 1994
#'
#' Dintest. Plugin for MS Excel for evaluations of calibration data. Written by
#' Georg Schmitt, University of Heidelberg. Formerly available from the Website
#' of the University of Heidelberg.
#'
#' Currie, L. A. (1997) Nomenclature in evaluation of analytical methods
#' including detection and quantification capabilities (IUPAC Recommendations
#' 1995). Analytica Chimica Acta 391, 105 - 126.
#' @keywords datasets
#' @examples
#'
#' m <- lm(y ~ x, data = din32645)
#' calplot(m)
#'
#' ## Prediction of x with confidence interval
#' prediction <- inverse.predict(m, 3500, alpha = 0.01)
#'
#' # This should give 0.07434 according to test data from Dintest, which
#' # was collected from Procontrol 3.1 (isomehr GmbH) in this case
#' round(prediction$Confidence, 5)
#'
#' ## Critical value:
#' crit <- lod(m, alpha = 0.01, beta = 0.5)
#'
#' # According to DIN 32645, we should get 0.07 for the critical value
#' # (decision limit, "Nachweisgrenze")
#' round(crit$x, 2)
#' # and according to Dintest test data, we should get 0.0698 from
#' round(crit$x, 4)
#'
#' ## Limit of detection (smallest detectable value given alpha and beta)
#' # In German, the smallest detectable value is the "Erfassungsgrenze", and we
#' # should get 0.14 according to DIN, which we achieve by using the method
#' # described in it:
#' lod.din <- lod(m, alpha = 0.01, beta = 0.01, method = "din")
#' round(lod.din$x, 2)
#'
#' ## Limit of quantification
#' # This accords to the test data coming with the test data from Dintest again,
#' # except for the last digits of the value cited for Procontrol 3.1 (0.2121)
#' loq <- loq(m, alpha = 0.01)
#' round(loq$x, 4)
#'
#' # A similar value is obtained using the approximation
#' # LQ = 3.04 * LC (Currie 1999, p. 120)
#' 3.04 * lod(m, alpha = 0.01, beta = 0.5)$x
#'
NULL
#' Calibration data from Massart et al. (1997), example 1
#'
#' Sample dataset from p. 175 to test the package.
#'
#'
#' @name massart97ex1
#' @docType data
#' @format A dataframe containing 6 observations of x and y data.
#' @source Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S.,
#' Lewi, P.J., Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and
#' Qualimetrics: Part A, Chapter 8.
#' @keywords datasets
NULL
#' Calibration data from Massart et al. (1997), example 3
#'
#' Sample dataset from p. 188 to test the package.
#'
#'
#' @name massart97ex3
#' @docType data
#' @format A dataframe containing 6 levels of x values with 5 observations of y
#' for each level.
#' @source Massart, L.M, Vandenginste, B.G.M., Buydens, L.M.C., De Jong, S.,
#' Lewi, P.J., Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and
#' Qualimetrics: Part A, Chapter 8.
#' @keywords datasets
#' @examples
#'
#' # For reproducing the results for replicate standard measurements in example 8,
#' # we need to do the calibration on the means when using chemCal > 0.2
#' weights <- with(massart97ex3, {
#' yx <- split(y, x)
#' ybar <- sapply(yx, mean)
#' s <- round(sapply(yx, sd), digits = 2)
#' w <- round(1 / (s^2), digits = 3)
#' })
#'
#' massart97ex3.means <- aggregate(y ~ x, massart97ex3, mean)
#'
#' m3.means <- lm(y ~ x, w = weights, data = massart97ex3.means)
#'
#' # The following concords with the book p. 200
#' inverse.predict(m3.means, 15, ws = 1.67) # 5.9 +- 2.5
#' inverse.predict(m3.means, 90, ws = 0.145) # 44.1 +- 7.9
#'
#' # The LOD is only calculated for models from unweighted regression
#' # with this version of chemCal
#' m0 <- lm(y ~ x, data = massart97ex3)
#' lod(m0)
#'
#' # Limit of quantification from unweighted regression
#' loq(m0)
#'
#' # For calculating the limit of quantification from a model from weighted
#' # regression, we need to supply weights, internally used for inverse.predict
#' # If we are not using a variance function, we can use the weight from
#' # the above example as a first approximation (x = 15 is close to our
#' # loq approx 14 from above).
#' loq(m3.means, w.loq = 1.67)
#' # The weight for the loq should therefore be derived at x = 7.3 instead
#' # of 15, but the graphical procedure of Massart (p. 201) to derive the
#' # variances on which the weights are based is quite inaccurate anyway.
#'
NULL
#' Cadmium concentrations measured by AAS as reported by Rocke and Lorenzato
#' (1995)
#'
#' Dataset reproduced from Table 1 in Rocke and Lorenzato (1995).
#'
#'
#' @name rl95_cadmium
#' @docType data
#' @format A dataframe containing four replicate observations for each of the
#' six calibration standards.
#' @source Rocke, David M. und Lorenzato, Stefan (1995) A two-component model
#' for measurement error in analytical chemistry. Technometrics 37(2), 176-184.
#' @keywords datasets
NULL
#' Toluene amounts measured by GC/MS as reported by Rocke and Lorenzato (1995)
#'
#' Dataset reproduced from Table 4 in Rocke and Lorenzato (1995). The toluene
#' amount in the calibration samples is given in picograms per 100 µL.
#' Presumably this is the volume that was injected into the instrument.
#'
#'
#' @name rl95_toluene
#' @docType data
#' @format A dataframe containing four replicate observations for each of the
#' six calibration standards.
#' @source Rocke, David M. und Lorenzato, Stefan (1995) A two-component model
#' for measurement error in analytical chemistry. Technometrics 37(2), 176-184.
#' @keywords datasets
NULL
#' Example data for calibration with replicates from University of Toronto
#'
#' Dataset read into R from
#' \url{https://sites.chem.utoronto.ca/chemistry/coursenotes/analsci/stats/files/example14.xls}.
#'
#'
#' @name utstats14
#' @docType data
#' @format A tibble containing three replicate observations of the response for
#' five calibration concentrations.
#' @source David Stone and Jon Ellis (2011) Statistics in Analytical Chemistry.
#' Tutorial website maintained by the Departments of Chemistry, University of
#' Toronto.
#' \url{https://sites.chem.utoronto.ca/chemistry/coursenotes/analsci/stats/index.html}
#' @keywords datasets
NULL
|