aboutsummaryrefslogtreecommitdiff
path: root/R/inverse.predict.lm.R
blob: 77d548f39b4e9696df2dc4cae87d5d92915d8710 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# This is an implementation of Equation (8.28) in the Handbook of Chemometrics
# and Qualimetrics, Part A, Massart et al (1997), page 200, validated with
# Example 8 on the same page, extended as specified in the package vignette

inverse.predict <- function(object, newdata, ...,
  ws = "auto", alpha = 0.05, var.s = "auto")
{
  UseMethod("inverse.predict")
}

inverse.predict.default <- function(object, newdata, ...,
  ws = "auto", alpha = 0.05, var.s = "auto")
{
  stop("Inverse prediction only implemented for univariate lm objects.")
}

inverse.predict.lm <- function(object, newdata, ...,
  ws = "auto", alpha = 0.05, var.s = "auto")
{
  yname = names(object$model)[[1]]
  xname = names(object$model)[[2]]
  if (ws == "auto") {
    ws <- ifelse(length(object$weights) > 0, mean(object$weights), 1)
  }
  if (length(object$weights) > 0) {
    w <- object$weights
  } else {
    w <- rep(1, nrow(object$model))
  }
  .inverse.predict(object = object, newdata = newdata, 
    ws = ws, alpha = alpha, var.s = var.s, w = w, xname = xname, yname = yname)
}

inverse.predict.rlm <- function(object, newdata, ...,
  ws = "auto", alpha = 0.05, var.s = "auto")
{
  yname = names(object$model)[[1]]
  xname = names(object$model)[[2]]
  if (ws == "auto") {
    ws <- mean(object$w)
  }
  w <- object$w
  .inverse.predict(object = object, newdata = newdata, 
    ws = ws, alpha = alpha, var.s = var.s, w = w, xname = xname, yname = yname)
}

.inverse.predict <- function(object, newdata, ws, alpha, var.s, w, xname, yname)
{
  if (length(object$coef) > 2)
    stop("More than one independent variable in your model - not implemented")

  if (alpha <= 0 | alpha >= 1)
    stop("Alpha should be between 0 and 1 (exclusive)")

  ybars <- mean(newdata)
  m <- length(newdata)

  n <- nrow(object$model)
  df <- n - length(object$coef)
  xi <- object$model[[2]]
  yi <- object$model[[1]]
  yihat <- object$fitted.values

  se <- sqrt(sum(w * (yi - yihat)^2)/df)

  if (var.s == "auto") {
    var.s <- se^2/ws
  }

  b1 <- object$coef[[xname]]

  ybarw <- sum(w * yi)/sum(w)

# This is the adapted form of equation 8.28 (see package vignette)
  sxhats <- 1/b1 * sqrt(
    (var.s / m) + 
    se^2 * (1/sum(w) + 
      (ybars - ybarw)^2 * sum(w) /
        (b1^2 * (sum(w) * sum(w * xi^2) - sum(w * xi)^2)))
  )

  if (names(object$coef)[1] == "(Intercept)") {
    b0 <- object$coef[["(Intercept)"]]
  } else {
    b0 <- 0
  }

  xs <- (ybars - b0) / b1
  t <- qt(1-0.5*alpha, n - 2)
  conf <- t * sxhats
  result <- list("Prediction"=xs,"Standard Error"=sxhats,
    "Confidence"=conf, "Confidence Limits"=c(xs - conf, xs + conf))
  return(result)
}

Contact - Imprint