1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
<!-- Generated by pkgdown: do not edit by hand -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Plot calibration graphs from univariate linear models — calplot • chemCal</title>
<!-- jquery -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
<!-- Bootstrap -->
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" />
<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
<!-- bootstrap-toc -->
<link rel="stylesheet" href="../bootstrap-toc.css">
<script src="../bootstrap-toc.js"></script>
<!-- Font Awesome icons -->
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" />
<!-- clipboard.js -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script>
<!-- headroom.js -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script>
<!-- pkgdown -->
<link href="../pkgdown.css" rel="stylesheet">
<script src="../pkgdown.js"></script>
<meta property="og:title" content="Plot calibration graphs from univariate linear models — calplot" />
<meta property="og:description" content="Produce graphics of calibration data, the fitted model as well
as confidence, and, for unweighted regression, prediction bands." />
<!-- mathjax -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body data-spy="scroll" data-target="#toc">
<div class="container template-reference-topic">
<header>
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">chemCal</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">0.2.2</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="../index.html">
<span class="fas fa-home fa-lg"></span>
</a>
</li>
<li>
<a href="../articles/chemCal.html">Get started</a>
</li>
<li>
<a href="../reference/index.html">Reference</a>
</li>
<li>
<a href="../news/index.html">Changelog</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/jranke/chemCal/">
<span class="fab fa-github fa-lg"></span>
</a>
</li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
</header>
<div class="row">
<div class="col-md-9 contents">
<div class="page-header">
<h1>Plot calibration graphs from univariate linear models</h1>
<div class="hidden name"><code>calplot.lm.Rd</code></div>
</div>
<div class="ref-description">
<p>Produce graphics of calibration data, the fitted model as well
as confidence, and, for unweighted regression, prediction bands.</p>
</div>
<pre class="usage"><span class='fu'>calplot</span><span class='op'>(</span><span class='va'>object</span>, xlim <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"auto"</span>, <span class='st'>"auto"</span><span class='op'>)</span>, ylim <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"auto"</span>, <span class='st'>"auto"</span><span class='op'>)</span>,
xlab <span class='op'>=</span> <span class='st'>"Concentration"</span>, ylab <span class='op'>=</span> <span class='st'>"Response"</span>, legend_x <span class='op'>=</span> <span class='st'>"auto"</span>,
alpha<span class='op'>=</span><span class='fl'>0.05</span>, varfunc <span class='op'>=</span> <span class='cn'>NULL</span><span class='op'>)</span></pre>
<h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
<table class="ref-arguments">
<colgroup><col class="name" /><col class="desc" /></colgroup>
<tr>
<th>object</th>
<td><p>A univariate model object of class <code><a href='https://rdrr.io/r/stats/lm.html'>lm</a></code> or
<code><a href='https://rdrr.io/pkg/MASS/man/rlm.html'>rlm</a></code>
with model formula <code>y ~ x</code> or <code>y ~ x - 1</code>.</p></td>
</tr>
<tr>
<th>xlim</th>
<td><p>The limits of the plot on the x axis.</p></td>
</tr>
<tr>
<th>ylim</th>
<td><p>The limits of the plot on the y axis.</p></td>
</tr>
<tr>
<th>xlab</th>
<td><p>The label of the x axis.</p></td>
</tr>
<tr>
<th>ylab</th>
<td><p>The label of the y axis.</p></td>
</tr>
<tr>
<th>legend_x</th>
<td><p>An optional numeric value for adjusting the x coordinate of the legend.</p></td>
</tr>
<tr>
<th>alpha</th>
<td><p>The error tolerance level for the confidence and prediction bands. Note that this
includes both tails of the Gaussian distribution, unlike the alpha and beta parameters
used in <code><a href='lod.html'>lod</a></code> (see note below).</p></td>
</tr>
<tr>
<th>varfunc</th>
<td><p>The variance function for generating the weights in the model.
Currently, this argument is ignored (see note below).</p></td>
</tr>
</table>
<h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
<p>A plot of the calibration data, of your fitted model as well as lines showing
the confidence limits. Prediction limits are only shown for models from
unweighted regression.</p>
<h2 class="hasAnchor" id="note"><a class="anchor" href="#note"></a>Note</h2>
<p>Prediction bands for models from weighted linear regression require weights
for the data, for which responses should be predicted. Prediction intervals
using weights e.g. from a variance function are currently not supported by
the internally used function <code><a href='https://rdrr.io/r/stats/predict.lm.html'>predict.lm</a></code>, therefore,
<code>calplot</code> does not draw prediction bands for such models.</p>
<p>It is possible to compare the <code>calplot</code> prediction bands with the
<code><a href='lod.html'>lod</a></code> values if the <code><a href='lod.html'>lod()</a></code> alpha and beta parameters are
half the value of the <code>calplot()</code> alpha parameter.</p>
<h2 class="hasAnchor" id="author"><a class="anchor" href="#author"></a>Author</h2>
<p>Johannes Ranke
<a href='mailto:jranke@uni-bremen.de'>jranke@uni-bremen.de</a></p>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><div class='input'><span class='fu'><a href='https://rdrr.io/r/utils/data.html'>data</a></span><span class='op'>(</span><span class='va'>massart97ex3</span><span class='op'>)</span>
<span class='va'>m</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/stats/lm.html'>lm</a></span><span class='op'>(</span><span class='va'>y</span> <span class='op'>~</span> <span class='va'>x</span>, data <span class='op'>=</span> <span class='va'>massart97ex3</span><span class='op'>)</span>
<span class='fu'>calplot</span><span class='op'>(</span><span class='va'>m</span><span class='op'>)</span>
</div><div class='img'><img src='calplot.lm-1.png' alt='' width='700' height='433' /></div></pre>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top">
<h2 data-toc-skip>Contents</h2>
</nav>
</div>
</div>
<footer>
<div class="copyright">
<p>Developed by Johannes Ranke.</p>
</div>
<div class="pkgdown">
<p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
</div>
</footer>
</div>
</body>
</html>
|