aboutsummaryrefslogtreecommitdiff
path: root/docs/reference/loq.html
blob: cfe87cca8f8709127325d26106d90bec7d122591 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Estimate a limit of quantification (LOQ) — loq • chemCal</title><!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"><script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css"><script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"><script src="../pkgdown.js"></script><meta property="og:title" content="Estimate a limit of quantification (LOQ) — loq"><meta property="og:description" content="The limit of quantification is the x value, where the relative error of the
quantification given the calibration model reaches a prespecified value 1/k.
Thus, it is the solution of the equation $$L = k c(L)$$
where c(L) is half of the length of the confidence interval at the limit L
(DIN 32645, equivalent to ISO 11843). c(L) is internally estimated by
inverse.predict, and L is obtained by iteration."><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]--></head><body data-spy="scroll" data-target="#toc">
    

    <div class="container template-reference-topic">
      <header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
  <div class="container">
    <div class="navbar-header">
      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
        <span class="sr-only">Toggle navigation</span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
        <span class="icon-bar"></span>
      </button>
      <span class="navbar-brand">
        <a class="navbar-link" href="../index.html">chemCal</a>
        <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="">0.2.3.9000</span>
      </span>
    </div>

    <div id="navbar" class="navbar-collapse collapse">
      <ul class="nav navbar-nav"><li>
  <a href="../articles/chemCal.html">Get started</a>
</li>
<li>
  <a href="../reference/index.html">Reference</a>
</li>
<li>
  <a href="../news/index.html">Changelog</a>
</li>
      </ul><ul class="nav navbar-nav navbar-right"><li>
  <a href="https://github.com/jranke/chemCal/" class="external-link">
    <span class="fab fa-github fa-lg"></span>
     
  </a>
</li>
      </ul></div><!--/.nav-collapse -->
  </div><!--/.container -->
</div><!--/.navbar -->

      

      </header><div class="row">
  <div class="col-md-9 contents">
    <div class="page-header">
    <h1>Estimate a limit of quantification (LOQ)</h1>
    <small class="dont-index">Source: <a href="https://github.com/jranke/chemCal/blob/HEAD/R/loq.R" class="external-link"><code>R/loq.R</code></a></small>
    <div class="hidden name"><code>loq.Rd</code></div>
    </div>

    <div class="ref-description">
    <p>The limit of quantification is the x value, where the relative error of the
quantification given the calibration model reaches a prespecified value 1/k.
Thus, it is the solution of the equation $$L = k c(L)$$
where c(L) is half of the length of the confidence interval at the limit L
(DIN 32645, equivalent to ISO 11843). c(L) is internally estimated by
<code><a href="inverse.predict.html">inverse.predict</a></code>, and L is obtained by iteration.</p>
    </div>

    <div id="ref-usage">
    <div class="sourceCode"><pre class="sourceCode r"><code><span class="fu">loq</span><span class="op">(</span>
  <span class="va">object</span>,
  <span class="va">...</span>,
  alpha <span class="op">=</span> <span class="fl">0.05</span>,
  k <span class="op">=</span> <span class="fl">3</span>,
  n <span class="op">=</span> <span class="fl">1</span>,
  w.loq <span class="op">=</span> <span class="st">"auto"</span>,
  var.loq <span class="op">=</span> <span class="st">"auto"</span>,
  tol <span class="op">=</span> <span class="st">"default"</span>
<span class="op">)</span></code></pre></div>
    </div>

    <div id="arguments">
    <h2>Arguments</h2>
    <dl><dt>object</dt>
<dd><p>A univariate model object of class <code><a href="https://rdrr.io/r/stats/lm.html" class="external-link">lm</a></code> or
<code><a href="https://rdrr.io/pkg/MASS/man/rlm.html" class="external-link">rlm</a></code> with model formula <code>y ~ x</code> or <code>y ~ x -
1</code>, optionally from a weighted regression. If weights are specified in the
model, either <code>w.loq</code> or <code>var.loq</code> have to be specified.</p></dd>
<dt>...</dt>
<dd><p>Placeholder for further arguments that might be needed by
future implementations.</p></dd>
<dt>alpha</dt>
<dd><p>The error tolerance for the prediction of x values in the
calculation.</p></dd>
<dt>k</dt>
<dd><p>The inverse of the maximum relative error tolerated at the desired
LOQ.</p></dd>
<dt>n</dt>
<dd><p>The number of replicate measurements for which the LOQ should be
specified.</p></dd>
<dt>w.loq</dt>
<dd><p>The weight that should be attributed to the LOQ. Defaults to
one for unweighted regression, and to the mean of the weights for weighted
regression. See <code><a href="massart97ex3.html">massart97ex3</a></code> for an example how to take
advantage of knowledge about the variance function.</p></dd>
<dt>var.loq</dt>
<dd><p>The approximate variance at the LOQ. The default value is
calculated from the model.</p></dd>
<dt>tol</dt>
<dd><p>The default tolerance for the LOQ on the x scale is the value of
the smallest non-zero standard divided by 1000. Can be set to a numeric
value to override this.</p></dd>
</dl></div>
    <div id="value">
    <h2>Value</h2>
    <p>The estimated limit of quantification for a model used for
calibration.</p>
    </div>
    <div id="note">
    <h2>Note</h2>
    
<ul><li><p>IUPAC recommends to base the LOQ on the standard deviation of the
signal where x = 0.</p></li>
<li><p>The calculation of a LOQ based on weighted regression is non-standard and
therefore not tested. Feedback is welcome.</p></li>
</ul></div>
    <div id="see-also">
    <h2>See also</h2>
    <div class="dont-index"><p>Examples for <code><a href="din32645.html">din32645</a></code></p></div>
    </div>

    <div id="ref-examples">
    <h2>Examples</h2>
    <div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"></span>
<span class="r-in"><span class="va">m</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/stats/lm.html" class="external-link">lm</a></span><span class="op">(</span><span class="va">y</span> <span class="op">~</span> <span class="va">x</span>, data <span class="op">=</span> <span class="va">massart97ex1</span><span class="op">)</span></span>
<span class="r-in"><span class="fu">loq</span><span class="op">(</span><span class="va">m</span><span class="op">)</span></span>
<span class="r-out co"><span class="r-pr">#&gt;</span> $x</span>
<span class="r-out co"><span class="r-pr">#&gt;</span> [1] 13.97764</span>
<span class="r-out co"><span class="r-pr">#&gt;</span> </span>
<span class="r-out co"><span class="r-pr">#&gt;</span> $y</span>
<span class="r-out co"><span class="r-pr">#&gt;</span> [1] 30.6235</span>
<span class="r-out co"><span class="r-pr">#&gt;</span> </span>
<span class="r-in"></span>
<span class="r-in"><span class="co"># We can get better by using replicate measurements</span></span>
<span class="r-in"><span class="fu">loq</span><span class="op">(</span><span class="va">m</span>, n <span class="op">=</span> <span class="fl">3</span><span class="op">)</span></span>
<span class="r-out co"><span class="r-pr">#&gt;</span> $x</span>
<span class="r-out co"><span class="r-pr">#&gt;</span> [1] 9.971963</span>
<span class="r-out co"><span class="r-pr">#&gt;</span> </span>
<span class="r-out co"><span class="r-pr">#&gt;</span> $y</span>
<span class="r-out co"><span class="r-pr">#&gt;</span> [1] 22.68539</span>
<span class="r-out co"><span class="r-pr">#&gt;</span> </span>
<span class="r-in"></span>
</code></pre></div>
    </div>
  </div>
  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
    <nav id="toc" data-toggle="toc" class="sticky-top"><h2 data-toc-skip>Contents</h2>
    </nav></div>
</div>


      <footer><div class="copyright">
  <p></p><p>Developed by Johannes Ranke.</p>
</div>

<div class="pkgdown">
  <p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.2.</p>
</div>

      </footer></div>

  


  

  </body></html>

Contact - Imprint