summaryrefslogtreecommitdiff
path: root/R/kinresults.R
blob: 27bdafb376833e85e00d819172f9abf74b930c82 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# $Id: kinresults.R 124 2011-11-09 10:58:27Z jranke $

# Copyright (C) 2008-2011 Johannes Ranke
# Contact: mkin-devel@lists.berlios.de

# This file is part of the R package kinfit

# kinfit is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.

# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.

# You should have received a copy of the GNU General Public License along with
# this program. If not, see <http://www.gnu.org/licenses/>

kinresults <- function(kinfits, alpha = 0.05, DTmax = 1000, SFORB=TRUE)
{
	kindata <- data.frame(
    		t = kinfits[[1]]$model$t, 
    		parent = kinfits[[1]]$model$parent)
 	kindata.means <- aggregate(kindata, list(kindata$t), mean)
	kindata.means.mean <- mean(kindata.means$parent, na.rm=TRUE)
	n.times <- length(kindata.means$parent)
	parms <- list()
	df <- err.min <- R2 <- RSS <- TSS <- RSS.means <- TSS.means <- vector()
	DT50 <- DT90 <- vector()
	f <- list()
	
	for (kinmodel in names(kinfits))
	{
		m = kinfits[[kinmodel]]
		if(class(m) == "nls") {
			kindata.means$est <- predict(m, kindata.means)
			
      		if (!"parent.0" %in% names(coef(m))) {
				
       			parms[[kinmodel]] <- switch(kinmodel,
          			SFO = list(k = coef(m)[["k"]]),
          			FOMC = list(alpha = coef(m)[["alpha"]],
              			beta = coef(m)[["beta"]]),
	    			HS = list(k1 = coef(m)[["k1"]],
              			k2 = coef(m)[["k2"]], 
              			tb = coef(m)[["tb"]]),
          			DFOP= list(k1 = coef(m)[["k1"]],
              			k2 = coef(m)[["k2"]], 
              			g = coef(m)[["g"]]))
      		} else {
        			parms[[kinmodel]] <- switch(kinmodel,
          				SFO = list(parent.0 = coef(m)[["parent.0"]], 
              				k = coef(m)[["k"]]),
          				FOMC = list(parent.0 = coef(m)[["parent.0"]],
              				alpha = coef(m)[["alpha"]],
             				 beta = coef(m)[["beta"]]),
          				HS = list(parent.0 = coef(m)[["parent.0"]], 
              				k1 = coef(m)[["k1"]],
             			 	k2 = coef(m)[["k2"]], 
              				tb = coef(m)[["tb"]]),
          				DFOP = list(parent.0 = coef(m)[["parent.0"]],
              				k1 = coef(m)[["k1"]],
              				k2 = coef(m)[["k2"]], 
              				g = coef(m)[["g"]]))
        			if(kinmodel == "DFOP" & SFORB) {
          				k1 = coef(m)[["k1"]]
          				k2 = coef(m)[["k2"]]
          				g = coef(m)[["g"]]
          				parms[["SFORB"]] = 
            				list(parent.0 = coef(m)[["parent.0"]],
              				k1out = g * k1 + (1 - g) * k2,
             			 	k21 = k1 * k2 / (g * k1 + (1 - g) * k2),
              				k12 = (g * (1 - g) * (k1 - k2)^2) / (g * k1 + (1 - g) * k2))
        			}
      		}

  			n.parms = length(coef(m))
			if (!"parent.0" %in% names(coef(m))) {

				f[[kinmodel]] = switch(kinmodel,
					HS = function(t, x) {
						(HS(t, kinfits[[kinmodel]]$model[["parent.0.user"]], 
							coef(m)[["k1"]], coef(m)[["k2"]], coef(m)[["tb"]]) - 
						(1 - x/100) * kinfits[[kinmodel]]$model[["parent.0.user"]])^2
					},
					DFOP = function(t, x) {
						(DFOP(t, kinfits[[kinmodel]]$model[["parent.0.user"]], 
							coef(m)[["k1"]], coef(m)[["k2"]], coef(m)[["g"]]) - 
						(1 - x/100) * kinfits[[kinmodel]]$model[["parent.0.user"]])^2
					}
				)
			}else{
				f[[kinmodel]] = switch(kinmodel,
					HS = function(t, x) {
						(HS(t, coef(m)[["parent.0"]], 
							coef(m)[["k1"]], coef(m)[["k2"]], coef(m)[["tb"]]) - 
						(1 - x/100) * coef(m)[["parent.0"]])^2
					},
					DFOP = function(t, x) {
						(DFOP(t, coef(m)[["parent.0"]], 
							coef(m)[["k1"]], coef(m)[["k2"]], coef(m)[["g"]]) - 
						(1 - x/100) * coef(m)[["parent.0"]])^2
					}
				)
			}
				
			coef(m)

			df[[kinmodel]] = n.times - n.parms
			RSS[[kinmodel]] = sum(summary(m)$residuals^2)
      TSS[[kinmodel]] = sum((m$model$parent - mean(m$model$parent))^2)
	
			DT50.o = switch(kinmodel,
        SFO = log(2)/coef(m)[["k"]],
				FOMC = coef(m)[["beta"]] * (2^(1/coef(m)[["alpha"]]) - 1),
				HS = optimize(f[[kinmodel]], c(0, DTmax), x=50)$minimum,
				DFOP = optimize(f[[kinmodel]], c(0, DTmax), x=50)$minimum)
			
			
      DT50[[kinmodel]] = ifelse(abs(DT50.o - DTmax) < 0.1, NA, DT50.o)
      DT90.o = switch(kinmodel,
          SFO = log(10)/coef(m)[["k"]],
          FOMC = coef(m)[["beta"]] * (10^(1/coef(m)[["alpha"]]) - 1),
          HS = optimize(f[[kinmodel]], c(0, DTmax), x=90)$minimum,
          DFOP = optimize(f[[kinmodel]], c(0, DTmax), x=90)$minimum)
      DT90[[kinmodel]] = ifelse(abs(DT90.o - DTmax) < 0.1, NA, DT90.o)

      # Chi2 error level as defined in FOCUS kinetics (see ?kinerrmin)
      err.min[[kinmodel]] <- kinerrmin(kinfits, kinmodel)

      # Coefficient of determination calculated from residual sum of squares and totals sum of squares
      # so this r2 is what is called model efficiency in FOCUS kinetics (2006), p. 99
      R2[[kinmodel]] = 1 - RSS[[kinmodel]]/TSS[[kinmodel]]

		}
	}

	stats <- data.frame(n.times = n.times, df = df, 
   	mean.means = kindata.means.mean, 
		RSS = RSS, err.min = err.min, R2 = R2)
	results <- data.frame(DT50 = DT50, DT90 = DT90)
	list(parms = parms, stats = stats, results = results)
}

Contact - Imprint